Tetrahedron Letters 54 (2013) 4577-4581

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Regioselective bromination of tetronic acid-derived γ -lactones and metal-catalyzed post-functionalization: an efficient access to new γ -ylidenetetronate derivatives

Shinya Iikawa^a, Nicolas Chopin^a, Guillaume Pilet^b, Jean-Philippe Bouillon^c, Maurice Médebielle^{a,*}

^a Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR CNRS 5246 CNRS-UCBL-INSA Lyon, Equipe SMITH, Bâtiment Curien, 43 bd du 11 Novembre 1918, 69622 Villeurbanne, France

^b Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI), UMR CNRS 5615, Bâtiment Chevreul, 43 bd du 11 Novembre 1918, 69622 Villeurbanne, France

^c Université de Rouen, Chimie Organique Bioorganique Réactivité et Analyses (COBRA), IRCOF, UMR CNRS 6014, 76821 Mont Saint Aignan, France

ARTICLE INFO

Article history: Received 27 May 2013 Revised 17 June 2013 Accepted 21 June 2013 Available online 29 June 2013

Keywords: Tetronic acid Aldol Bromination Sonogashira 1,2,3-Triazole

ABSTRACT

The synthesis of several methyl and benzyl γ -ylidenetetronates was accomplished and the bromination reactions of these derivatives, using bromine or *N*-bromosuccinimide (NBS), were found to occur under mild conditions. Several new brominated γ -unsaturated lactones derived from tetronic acid were prepared in moderate to good yields, with some of them characterized by single crystal X-ray diffraction. A preliminary reactivity study of two bromine-derived γ -benzylidene methyl tetronates, in Sonogashira cross-coupling reactions, with also preparation of 1,2,3-triazole-derived γ -benzylidene methyl tetronate under Cu(1)-catalyzed condition, was performed with an indication that these brominated γ -benzylidene tetronates are useful platforms to produce diversified γ -lactones.

© 2013 Elsevier Ltd. All rights reserved.

 γ -Lactones derived from tetronic acids and derived molecules, are structures that occur naturally with various biological activities and are promising compounds that can be used in a number of synthetic useful reactions to prepare bioactive materials (Fig. 1).¹ In our current research program directed to the synthesis and biological evaluation of new therapeutic agents, halogenated γ -lactones derived from tetronic acids were identified as useful synthetic intermediates, with the aim to prepare a set of molecules with some diversity (R¹, R², R³, and R⁴), through for example, metal-catalyzed cross-coupling post-functionalization (Scheme 1). These halogenation sequences starting from the γ -benzylidenetetronates and use of the resulting products in the development of new valuable organic entities and chemotherapeutic agents are relatively scarce in the literature.²

In this Letter, we disclose our preliminary results directed to the synthesis of γ -lactones derived from methyl and benzyl tetronates, their regioselective bromination, and their use in Sonogashira³ cross-coupling reactions. In order to demonstrate the synthetic utility of our strategy, an example of Cu(I)-catalyzed 1,3-dipolar cycloaddition with benzyl azide as 1,3-dipole, using an acetylenic-derived methyl γ -benzylidene-derived tetronate,⁴ is also

* Corresponding author. Tel.: +33 4 7243 1989.

E-mail address: maurice.medebielle@univ-lyon1.fr (M. Médebielle).

Figure 1. Natural and bioactive tetronic acid derivatives.

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.06.106

Scheme 1. General access to the targets.

presented giving access to a pharmaceutical relevant 1,2,3-triazole tetronic acid-derived γ -lactone derivative.

Starting lactones of general structure **1** (Scheme 1) were prepared, following literature procedures developed with some analogues,^{2b,c,5} using either methyl tetronate (commercially available) or known benzyl derivative.^{2b,c} The benzyl derivative was easily prepared in 60% yield by the reaction of benzyl bromide (1.1 equiv) and potassium carbonate (K₂CO₃) (2.0 equiv) in *N*,*N*dimethylformamide (DMF). Treating tetronates **4** (**4a**, R¹ = Me, **4b**, R¹ = Bn) with *n*-BuLi (1.1 equiv) and aldehydes (1.5 equiv) **5**– **10** in tetrahydrofuran (THF) from -78 °C to room temperature (overnight) gave the aldols adducts **11–16** as diastereoisomeric mixtures (1/1) in good to excellent yields, after column chromatography purification (Scheme 2 and Table 1). These alcohols **11–16** were then transformed into the corresponding γ -lactones **17–22**, in moderate to good yields (Table 1), following a two-steps/onepot sequence through esterification with trifluoroacetic anhydride

Scheme 2. γ -Lactone synthesis from methyl or benzyl tetronates.

Table 1	
---------	--

Preparation	of the	γ -ylidenetetronates	and	precursors
-------------	--------	-----------------------------	-----	------------

\mathbb{R}^1	R ² in R ² CHO	Aldol (% yield) ^a	γ -Lactone (% yield) ^a
Me	5 : Ph	11a (93%)	17a (42%; 57% ^b)
Me	6: 4-F-Ph	12a (82%)	18a (63%) ^b
Me	7: 3,4-OMe-Ph	13a (65%)	19a (60%)
Me	8: 3,4-F-Ph	14a (99%)	20a (34%)
Me	9: 4-CF ₃ -Ph	15a (67%)	21a (65%)
Me	10: Ferrocenyl	16a ^c	22a (99%)
Bn	5 : Ph	11b (94%)	17b (50%)
Bn	6: 4-F-Ph	12b	18b (90%)
Bn	7: 3,4-OMe-Ph	(99%) 13b (55%)	19b (33%)
Bn	9 : 4-CF ₃ -Ph	15b (96%)	21b (32%)

^a Isolated yield.

^b Concd H₂SO₄ in dichloromethane at rt was used.

^c Not formed (see text).

and elimination with 1,8-diazabicycloundec-7-ene (DBU) as a base,^{2b,c} using dichloromethane as solvent. All the compounds 17–22 were obtained as a Z stereoisomer after column chromatography.⁵ A minor *E* isomer was observed when R^1 = Me from the crude product (¹H NMR) but was not isolated during purification because of trace amount, while for γ -lactones with R^1 = Bn such isomer was not detected at all. The Z stereochemistry has been confirmed by single-crystal X-ray diffraction for the ferrocenyl-derived compound **22a** (Fig. 2)⁶ which has been obtained directly during the aldolization process, without requiring the esterification/elimination step. Aldol products 11a and 12a can also be transformed into their corresponding unsaturated lactones 17a and **18a** respectively, using H_2SO_4 in dichloromethane.⁷ For γ -lactone **21b** the elimination step was not efficient compared with its methyl analogue **21a**, and in general the -OBn derivatives were found to be prone to some decomposition during the esterification/elimination step.

Bromination reactions were first performed on γ -lactone **17a** as a model compound and *N*-bromosuccinimide (NBS) as brominating reagent. Lithiation of **17a** using lithium diisopropylamide (LDA) in THF and trapping the C-3 lithium derivative with NBS in excess (2.3 equiv), gave **23a** in a moderate 52% isolated yield while using just NBS (2.5 equiv) in dichloromethane resulted in the dibromination on the exocyclic double bond with the formation of **24a** in a modest 24% yield (Scheme 3).

These results show that bromination on C-3 position can occur selectively through a previous activation (in this case with LDA). Otherwise, running the reaction with bromine (1.5 equiv) in the presence of pyridine (1.1 equiv) in dichloromethane at room temperature over 2 h (concentration of substrate, C = 0.1 M), gave **23a** in an excellent 91% isolated yield after column chromatography purification (Scheme 4). This optimized and more practical condition was found to be general, with some slight modifications, for a series of γ -lactones **17–21** giving the corresponding 3-brominated γ -lactones **23, 25–28** in moderate to excellent yields (Table 2).⁸

When γ -lactone **17a** was reacted with bromine (1.0 equiv) in dichloromethane, without pyridine, at 0 °C (1 h) and guenching

Figure 2. Single crystal X-ray diffraction of (*Z*)- γ -lactone **22a**.

Scheme 3. Bromination of γ-lactone 17a using N-bromosuccinimide.

Download English Version:

https://daneshyari.com/en/article/5265299

Download Persian Version:

https://daneshyari.com/article/5265299

Daneshyari.com