A phosphoryl to spiro-bicyclophosphorane transformation via $\boldsymbol{\beta}$-amidic proton elimination in phosphorylated hydrazides

Khodayar Gholivand *, Hamid R. Mahzouni, Foroogh Molaei, Ali A. Kalateh
Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran

A R TICLE INFO

Article history:

Received 25 June 2012
Revised 13 August 2012
Accepted 24 August 2012
Available online 1 September 2012

Keywords:

${ }^{2} J_{\text {PH }}$ Coupling constant
Hydrazide
Phosphoryl
Spiro-bicyclophosphorane

Abstract

The reaction between phosphoryl-containing reagents and hydrazides has been studied. The tetrahedral phosphoryl structure is transformed into a spiro-bicyclophosphorane system with trigonal bipyramidal geometry by the elimination of a β-amidic proton in the reaction between a hydrazide and phosphoryl reagents with at least two leaving groups (Cl) bound to the phosphorus atom, such as POCl_{3} or PhPOCl_{2}. In the spiro-bicyclophosphorane structure, the $\mathrm{C}=\mathrm{N}$ imine bond is formed upon β-amidic proton elimination, leading to the conversion of the $\mathrm{C}=\mathrm{O}$ into a $\mathrm{C}-\mathrm{O}$ bond and the formation of a $\mathrm{P}-\mathrm{O}$ bond. All of these structural rearrangements are supported by X-ray crystallography data, and NMR and IR experiments.

© 2012 Elsevier Ltd. All rights reserved.

The structures of cyclic pentacoordinate phosphoranes have attracted significant interest because they serve as models for biologically active compounds and intermediates. ${ }^{1-4}$ Heterocyclic phosphoranes with a $\mathrm{P}-\mathrm{N}-\mathrm{N}=\mathrm{C}-\mathrm{O}$ unit have been previously prepared via the redox coupling of a trialkyl- or triarylphosphine $\left(\mathrm{PR}_{3}\right)$ and a dialkyl azodicarboxylate ($\mathrm{ROOCN}=\mathrm{NCOOR}$). ${ }^{5,6}$ Such N - and O-cycloadditions also occur in the reaction of a simple hydrazide $\left(\mathrm{RCONHNH}_{2}\right)$ with phosphorus(III) mono- or triamides to form cyclophosphorane systems. ${ }^{7,8}$ Moreover, there are reports on the synthesis and reactivities of phosphorus hydrazides $\left[\mathrm{P}(\mathrm{X})\left(\mathrm{NRNH}_{2}\right)_{2}, \mathrm{X}=\mathrm{O}\right.$ and S$],{ }^{9-16}$ although these compounds do not transform into products with the phosphorane structure. To the best of our knowledge, phosphoryl-containing reagents have never been used for the formation of spiro-bicyclophosphoranes. Here, we present the synthesis of such compounds based on the reaction of simple hydrazides (benzhydrazide and 4-pyridinecarboxylic acid hydrazide) with phosphoryl-containing reagents $\left(\mathrm{POCl}_{3}, \mathrm{PhPOCl}_{2}\right.$ and $\left.\mathrm{Ph}_{2} \mathrm{POCl}\right)$. The molecular geometry of the products depends on the number of appropriate leaving groups (Cl) bound to the phosphoryl functional group in the reactant. A simple acid-base reaction between benzhydrazide and a phos-phoryl-containing reactant with only one chlorine atom ($\mathrm{Ph}_{2} \mathrm{POCl}$) produces a product with tetrahedral structure at the phosphorus atom. On the other hand, products with a trigonal bipyramidal structure (spiro-bicyclophosphorane) are formed, when phosphoryl reagents with at least two chlorine atoms $\left(\mathrm{PhPOCl}_{2}\right.$ or POCl_{3}) are used.

[^0]

Scheme 1. Synthesis of 1.

Compound $\mathbf{1}$ was prepared by the reaction between a mixture of benzhydrazide, $\mathrm{Ph}_{2} \mathrm{POCl}$, and triethylamine in acetonitrile ${ }^{17}$ (Scheme 1). Figure 1 shows the X-ray crystal structure of $\mathbf{1}$. The $\mathrm{P}=\mathrm{O}(1.489(2) \AA), \mathrm{P} 1-\mathrm{N} 2(1.659(2) \AA)$, and $\mathrm{C}=\mathrm{O}(1.235(2) \AA)$ distances are similar to those in other well-known phosphoramides ${ }^{18}$ and carbacylamidophosphates ${ }^{19}$ with tetrahedral configurations at the phosphorus atom. The chemical shift of the β-amidic proton in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ appeared at 10.17 ppm (Table 1), implying its high acidity and ability to undergo elimination in basic media. The chemical shifts of 21.80 and 166.93 ppm in the ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively, and the bands at $1198(\mathrm{P}=0)$ and 1655 $(\mathrm{C}=0) \mathrm{cm}^{-1}$ in the IR spectrum confirm the presence of $\mathrm{P}=0$ and $\mathrm{C}=\mathrm{O}$ functional groups in $\mathbf{1}$. We have recently shown that the ${ }^{2} \mathrm{~J}_{\mathrm{PNH}}$ coupling constant increases when the P-N distance is shortened. ${ }^{20}$ Here, the ${ }^{2} J_{\text {PNH }}$ value (21.9 Hz) in $\mathbf{1}$ is relatively high in magnitude compared with other phosphoramide compounds previously reported, ${ }^{18,20}$ although the P1-N2 distance is not too short.

The phosphoryl structure is transformed into a spiro-bicyclophosphorane system by a dehydration-cyclization rearrangement, when at least two Cl leaving groups are bound to the $\mathrm{P}=\mathrm{O}$ functional group in the starting material. The reaction between benzhydrazide and POCl_{3} (2:1), in acetonitrile under reflux conditions,

Figure 1. ORTEP representation of compound 1. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$: P1-N2, 1.6587(15); P1-O2, 1.4886(12); P1-C8, 1.7981(18); P1C14, 1.7941(17); N1-N2, 1.4048(19); C1-N1, 1.346(2); C1-O1, 1.235(2); O1-P1O2, 170.12(8); O2-P1-N2, 118.55(7); O2-P1-C14, 110.93(7); O2-P1-C8, 111.42(8); C8-P1-C14, 108.41(8); N2-P1-C14, 103.67(7); N2-P1-C8, 103.10(8).
leads to intermediate I. Compounds 2 and 3 were prepared by treatment of the appropriate amines (morpholine and tertbutylamine) with intermediate $\mathbf{I}(2: 1),{ }^{21}$ Scheme 2 . The proposed synthetic pathway for products $\mathbf{2}$ and $\mathbf{3}$ (Scheme 2) indicates that cyclization of the initial phosphorylated hydrazide is started by elimination of the β-amidic proton followed by dehydration. Compound 2 was recrystallized from a mixture of methanol and acetonitrile (4:1) at room temperature to obtain crystals suitable for X-ray analysis.

Figure 2 shows the molecular structure of compound 2. The phosphorus atom adopts a distorted trigonal bipyramidal geometry in spiro-bicyclophosphorane 2 with the oxygen atoms in axial and nitrogen atoms in equatorial positions. The C1-N2 distance (1.282(3) \AA) in $\mathbf{2}$ is considerably shorter than a typical C-N single bond, while the C1-O1 distance (1.351(2) \AA) in 2 is longer than the $\mathrm{C}=0$ bond in $\mathbf{1}$. This is in good agreement with the β-amidic proton elimination and the changes in the $\mathrm{C} 1-\mathrm{N} 2$ and $\mathrm{C} 1-\mathrm{O} 1$ bond lengths upon cyclization. In the ${ }^{31}$ P NMR spectrum of 2, a triplet of triplets appeared at -37.72 ppm . This splitting pattern arises from the spin couplings between the phosphorus nucleus and two NH_{α} (${ }^{2} J_{\mathrm{PNH}}=40.4 \mathrm{~Hz}$) and two axial $\mathrm{N}-\mathrm{CH}_{\text {morpholine }}\left({ }^{3} \mathrm{~J}_{\mathrm{PNCH}}=8.9 \mathrm{~Hz}\right)$ protons. The spin couplings between the phosphorus nucleus and two

Scheme 2. Synthesis of compounds $\mathbf{2}$ and $\mathbf{3}$ and the proposed reaction mechanism.
$\mathrm{N} H_{\alpha}$ protons $\quad\left({ }^{2} J_{\mathrm{PNH}}=45.2 \mathrm{~Hz}\right)$ and one $\mathrm{NH}_{\text {tert-butylamine }}$ (${ }^{2} J_{\mathrm{PNH}}=12.1 \mathrm{~Hz}$) proton lead to a doublet of triplets for the ${ }^{31} \mathrm{P}$ NMR signal in compound 3. The ${ }^{2} J_{\text {PNH }}$ coupling constants in compounds 2 and $\mathbf{3}$ are larger than the corresponding values in 1. The decrease in $\delta\left({ }^{13} \mathrm{C}\right)$ values, from 166.93 ppm in $\mathbf{1}$ to 152.54 and 151.68 ppm , respectively, in compounds 2 and $\mathbf{3}$ (Table 1), confirms the formation of a CO-P connection between the carbonyl oxygen atom and the phosphorus atom upon cyclization. The CO-P bond leads to spin couplings for the phosphorus and carbon nuclei with ${ }^{2} J_{\text {POC }}$ values in the range of $14.1-14.6 \mathrm{~Hz}$. The sharp bands at $\sim 1330 \mathrm{~cm}^{-1}$ in the IR spectra of compounds 2 and $\mathbf{3}$ confirm the decrease in the bond order from $\mathrm{C}=\mathrm{O}$ to $\mathrm{C}-\mathrm{O}$ on cyclization and that the oxygen atom is bound to the phosphorus atom.

Compounds $4-6$ were synthesized by the reaction of a mixture of triethylamine and benzhydrazide or 4-pyridinecarboxylic acid

Table 1
Selected spectroscopic data of products 1-8

Product	$\delta^{\mathrm{a}}\left({ }^{31} \mathrm{P}\right)$ in ppm	${ }^{1} \mathrm{H}: \delta^{\text {b,c }}(\mathrm{ppm}) /^{2} \mathrm{~J}_{\text {PNH }}(\mathrm{Hz})$	${ }^{13} \mathrm{C}: \delta^{\mathrm{b}, \mathrm{c}}(\mathrm{ppm}) /^{2}{ }^{\text {PoC }}$ (Hz$)$	$v(\mathrm{C}=0) \mathrm{in} \mathrm{cm}^{-1}$
1	21.80	$H^{\alpha}: 7.76 / 21.9$	166.93/-	1655
		$H^{\beta}: 10.17 /-$		
		$\left.{ }^{1} \mathrm{H}: \delta^{\mathrm{b}, \mathrm{c}}\right]^{2} J_{\mathrm{PNH}}(\mathrm{Hz})$	${ }^{13} \mathrm{C}: \delta^{\mathrm{b}, \mathrm{c} / 2}{ }^{\text {JPOC }}$ (Hz)	
2	-37.72	8.57/40.4	152.54/14.1	-/1330
3	-43.31	3.69/12.1	151.68/14.6	-/1328
		8.17/45.2		
4	-36.19	8.85/36.9	154.20/10.9	-/1324
5	-47.40	7.15/13.4	152.52/15.1	-/1324
		8.58/39.9		
6	-46.92	7.32/13.3	150.71/15.4	-/1326
		8.99/40.9		
7	-45.23	6.75/36.6	152.06/14.6	1669/1329
		8.48/39.6	166.39/-	
		9.88/-		
8	-45.31	7.12/37.3	150.41/15.4	1686/1323
		8.98/41.1	164.91/-	
		10.38/-		

[^1]
https://daneshyari.com/en/article/5265847

Download Persian Version:

https://daneshyari.com/article/5265847

Daneshyari.com

[^0]: * Corresponding author. Tel.: +98 2182883443.

 E-mail address: gholi_kh@modares.ac.ir (K. Gholivand).

[^1]: ${ }^{\text {a }}$ The ${ }^{31} \mathrm{P}$ NMR spectra were recorded for DMSO- d_{6} solutions at 202.45 MHz .
 ${ }^{\mathrm{b}}$ The ${ }^{31} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded for DMSO- d_{6} solutions at 500.13 and 125.77 MHz , respectively.
 ${ }^{\text {c }}$ The chemical shifts for the amidic protons and carbonyl (or imine) carbon atoms are provided.

