Tetrahedron Letters 53 (2012) 5749-5752

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A novel strategy for the chiral 2,4,5-triol moiety and its application to the synthesis of seimatopolide A and (2S,3R,5S)-(-)-2,3- dihydroxytetradecan-5-olide

B. Phaneendra Reddy, T. Pandurangam, J. S. Yadav, B. V. Subba Reddy*

Natural Products Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India

ARTICLE INFO

Article history: Received 27 June 2012 Revised 6 August 2012 Accepted 8 August 2012 Available online 14 August 2012

Keywords: Prins cyclization McMillan aminoxylation 2,4,5-Triols Ring closing metathesis

ABSTRACT

A highly stereoselective approach to the total synthesis of seimatopolide A and (2S,3R,5S)-(-)-2,3-dihydroxytetradecan-5-olide is described via a common polyketide precursor by means of Prins reaction and MacMillan aminoxylation sequence.

© 2012 Elsevier Ltd. All rights reserved.

2,4,5-Triols are important building blocks and found in many biologically active molecules such as seimatopolide A, (2S,3R,5S)-(-)-2,3-dihydroxy-tetradecan-5-olide, achaetolide, decarestrictine O, galantinic acid, synparvolide B and botryolide E (Fig. 1). Many polyketide natural products have been isolated from fungal sources and are known to possess potent biological properties.¹

Natural products with medium size lactone ring possess a wide range of biological activities such as antibacterial and antifungal behaviour.² The seimatopolides constitute an 18-carbon polyhydroxylated 10-membered lactone with *E*-configured double bond at C-4. They were isolated from the extract of *Seimatosporium discosioides* fungal culture medium.³ They are found to activate peroxisome proliferator-activated receptor γ (PPAR- γ) with EC₅₀ values of 1.15 μ M. The structure of seimatopolides A (1) was proposed based on spectroscopic and modified Mosher's method.

Toshima et al. have recently isolated the biologically active δ lactone (2*S*,3*R*,5*S*)-(-)-2,3-dihydroxy-tetradecan-5-olide (**2**) from *Seridium unicome*.⁴ It exhibits antifungal activity against *Cladosporium herbarum*. Owing to the occurrence of 2,4,5-triols in various polyketides, we were interested to develop a concise and practical approach for the synthesis of 2,4,5-triol core structure.

In this article, we wish to report a novel strategy for the synthesis of 2,4,5-triol moiety by means of Prins cyclization followed by

* Corresponding author. Fax: +91 40 27160512.

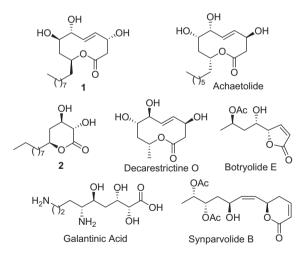
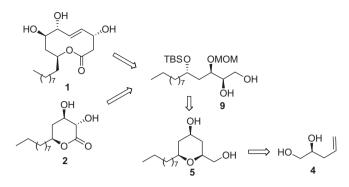
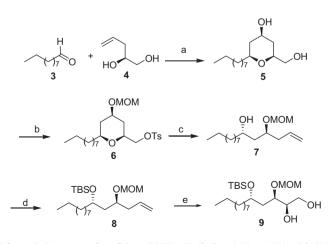


Figure 1. Examples of 2,4,5-triol containing natural products.

reductive cleavage and α -aminoxylation sequence. Application of such a chiral building block in natural product synthesis is then exemplified through the total synthesis of seimatopolide A and (2S,3R,5S)-(-)-2,3-dihydroxytetradecan-5-olide.


In our retrosynthetic analysis (Scheme 1), we envisaged that the target molecules **1** and **2** could be prepared from a common intermediate **9**, which was proposed to be obtained from the MacMillan α -hydroxylation. The 2,4,6-trisubstituted tetrahydropyran core **5**

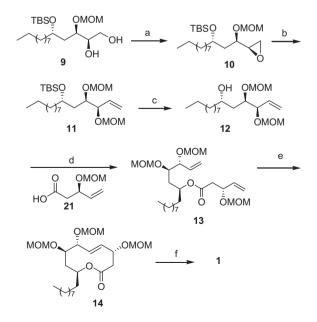
E-mail address: basireddy@iict.res.in (B.V.S. Reddy).


^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.08.027

Scheme 1. Retrosynthetic analysis of seimatopolide A and (2S,3R,5S)-(-)-2,3- dihydroxy-tetradecan-5-olide.

could be obtained via the Prins cyclization between homoallylic alcohol **4** and *n*-decanal **3**. We envisioned that polyhydroxy compound (**9**) would be a common chiral synthon for accessing seimatopolide A (**1**) and $(2S_3R_5S_5)$ -(-)-2,3-dihydroxytetradecan-5-olide (**2**) via the RCM and TEMPO/BAIB cyclization respectively.

Our strategy for the synthesis of seimatopolide A (1) is depicted in Scheme 2. We began the synthesis of **1** with a homoallylic alcohol 4 which was prepared from (S)-benzyl glycidyl ether. Accordingly, treatment of n-decanal **3** with a homoallylic alcohol **4** under Prins cyclization conditions afforded the 2,4,6-cis-trisubstituted tetrahydropyranol 5 in 73% yield with high diastereoselectivity.⁵ Chemoselective tosylation of primary alcohol **5** with 1.1 equiv of tosyl chloride in the presence of TEA in DCM gave the corresponding tosylate in 92% yield. Protection of secondary alcohol with MOMCl in the presence of Hunig's base afforded the MOM ether 6 in 90% yield. Treatment of tosylate 6 with NaI in refluxing acetone afforded the iodo compound in 94% yield, which upon treatment with activated zinc in refluxing ethanol gave anti-1,3diol 7 in 90% vield.⁶ Protection of compound 7 with TBSCl and imidazole afforded the corresponding TBS ether 8 in 97% yield. Treatment of compound **8** with OsO_4 , 2.6-lutidine and $NaIO_4$ gave the corresponding aldehyde. Subsequent α -amino-oxylation of aldehyde with nitrosobenzene in the presence of D-proline in DMSO at -10 °C, followed by treatment with NaBH₄ in MeOH gave the crude α -aminooxy alcohol. Further treatment of α -aminooxy


Scheme 2. Reagents and conditions: (a) TFA, CH_2CI_2 then K_2CO_3 , MeOH rt, 3 h, 73%; (b) (i) TEA, TsCl, CH_2CI_2 , 0 °C to rt., 3 h, 92%; (ii) MOMCl, Hunig's base, 0 °C to rt, 2 h, 90%; (c) (i) Nal, acetone reflux, 24 h, 94%; (ii) Zn, EtOH reflux, 1 h, 90%; (d) TBSCl, imidazole, CH_2CI_2 0 °C to rt., 3 h, 97%; (e) (i) OsO₄, 2,6-lutidine, NalO₄, dioxane–H₂O; (ii) PhNO, D–proline (40 mol %), DMSO, rt, 30 min then NaBH₄, EtOH, then CuSO₄, MeOH, 12 h.

alcohol with 30 mol % CuSO₄·5H₂O gave chiral diol **9** in 60% overall yield (Scheme 2).⁷

Treatment of diol 9 with TsCl in the presence of TEA gave the monotosylate which was then treated with K₂CO₃ in MeOH to furnish epoxide 10 in 85% yield. Ring opening of epoxide 10 with trimethylsulfonium iodide in the presence of n-BuLi in THF at -20 °C gave the allylic alcohol in 88% yield⁸ which on further treatment with MOMCl in the presence of Hunig's base afforded MOM ether 12 in 92% yield. Desilylation of compound 11 with TBAF resulted in the formation of alcohol 12 in 89% yield. Next, we attempted the coupling of alcohol 12 with a carboxylic acid 21⁹ so as to construct a 10-membered ring via RCM reaction. Under Steglich conditions (DCC and DMAP), the coupling of alcohol 12 with an acid 21 gave the corresponding ester 13 in 85% yield.¹⁰ Ring-closing metathesis reaction of 16 using Grubbs' second generation catalvst in CH₂Cl₂ at reflux temperature for 6 h gave compound 14 in 70% yield as a E-isomer.¹¹ Deprotection of MOM ethers with 2 N HCl gave the target molecule, seimatopolide A (1) in 88% yield (Scheme 3). The spectral data (¹H and ¹³C NMR) of seimatopolide A (1) were identical to the data reported in the literature.¹²

After successful completion of seimatopolide A (1), we attempted the synthesis of (2S,3R,5S)-(-)-2,3- dihydroxytetradecan-5-olide using a common intermediate **9**. Accordingly, monosilylation of diol **9** with TBSCl in the presence of imidazole gave the TBDMS ether in 97% yield. Protection of secondary alcohol with MOMCl in the presence of Hunig's base afforded MOM ether **15**. Desilylation of compound **15** with TBAF resulted in the formation of diol **16** in 83% yield. Chemoselective oxidation of 1,5-diol **16** with TEMPO/BAIB system gave δ -lactone **17** in 85% yield.¹³ Deprotection of MOM group with aqueous hydrochloric acid in methanol afforded the target molecule (**2**) in 87% yield (Scheme 4). The analytical data of the target molecule were in good agreement with the data reported in literature.¹²

In summary, we have developed a concise approach to the total synthesis of seimatopolide A and (2S,3R,5S)-(-)-2,3-dihydroxyte-tradecan-5-olide using a common polyketide precursor 2,4,5-triol unit. This approach successfully utilizes Prins cyclization, reductive cleavage, and α -aminoxylation synthetic sequence to the total

Scheme 3. Reagents and conditions: (a) (i) TEA, TsCl, CH_2Cl_2 , 0 °C to rt, 3 h, 92%; (ii) K₂CO₃, MeOH; (b) (i) Me₃Sl, *n*-BuLi, THF, -20 °C, 88%; (ii) MOMCl, Hunig's base, 0 °C to rt, 2 h, 92%; (c) TBAF, THF, rt, 2 h, 83%; (d) DCC, DMAP, CH_2Cl_2 , rt, 85%; (e) Grubbs catalyst-II, CH_2Cl_2 , reflux, 3 h, 70%; (f) 2 N HCl, THF, 15 h, rt, 87%.

Download English Version:

https://daneshyari.com/en/article/5265972

Download Persian Version:

https://daneshyari.com/article/5265972

Daneshyari.com