[Tetrahedron Letters 57 \(2016\) 5103–5107](http://dx.doi.org/10.1016/j.tetlet.2016.10.016)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Facile synthesis of amino acid-derived novel chiral hypervalent iodine(V) reagents and their applications

Yasushi Yoshida ^{a,b,}*, Akina Magara ^a, Takashi Mino ^{a,b}, Masami Sakamoto ^{a,b}

a Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan ^b Molecular Chirality Research Center (MCRC), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan

article info

Article history: Received 24 August 2016 Revised 30 September 2016 Accepted 7 October 2016 Available online 8 October 2016

Keywords: Chiral hypervalent iodine(V) reagent Asymmetric synthesis Metal-free oxidation Dearomatization Dimerization

ABSTRACT

Amino acid-derived novel chiral hypervalent iodine(V) reagents were synthesized from the corresponding chiral iodoarenes through DMDO oxidations. Their oxidation states were determined by the 13 C NMR chemical shifts of the ipso-carbon of the iodine atom, HRMS analysis, and elemental analyses. They were applied to the enantioselective hydroxylative dearomatization/[4+2]-dimerization cascade reactions of phenol derivatives to afford the desired products with up to 58% ee.

2016 Elsevier Ltd. All rights reserved.

Introduction

Hypervalent iodine reagents such as λ^3 - and λ^5 -iodanes have been widely used as metal-free and mild oxidants in complex molecule syntheses including natural products ([Fig. 1](#page-1-0)).¹ Chiral hypervalent iodine(III) reagents have also been developed as stoichiometric oxidants in enantioselective reactions.[2](#page--1-0) In 2008, Kita and co-workers reported the first highly enantioselective spirotype chiral hypervalent iodine(III) 1 mediated oxidative spirolactonization of phenol derivatives (Kita reaction) with up to 86% ee.2l In 2010, Ishihara and co-workers reported the first catalytic highly enantioselective Kita reaction using lactic acid-derived amide type C_2 -symmetric iodoarene 2b and mCPBA co-oxidant with up to 92% ee. $3m,n$ Following this successful synthesis, chiral hypervalent iodine(III) reagents have been widely investigated as both stoichiometric oxidants and catalysts. In the past halfdecade, they have been used as chiral organocatalysts with a stoichiometric amount of achiral co-oxidant.^{[3](#page--1-0)} They have been successfully applied to many types of transformations such as difluorinations, $3a-c$ acyloxylations, $3d,e,i-n$ construction of quaternary stereogenic centers, $3f$ and stereoselective rearrangements. $2g$ On the other hand, although achiral hypervalent iodine(V) reagents have been utilized in numerous fascinating transformations,^{[4](#page--1-0)} examples of successful chiral hypervalent iodine(V)-mediated reactions are rare.⁵

Zhdankin and co-workers developed many novel chiral hypervalent iodine(V) reagents such as 4; some of them afforded enantioselective oxidation products with moderate enantioselectivities.5d,e In 2009, Birman and co-workers reported the preparation of oxazoline-based chiral hypervalent iodine(V) reagents 5; they were successfully applied to the oxidative dearomatization reactions, affording products in up to 77% enantiomeric excess.^{5c,6} More recently, Pouységu, Quideau, and co-workers demonstrated an excellent preparation of biphenyltype compounds 6 and salen-type chiral hypervalent iodine(V) reagents and their successful applications to stereoselective hydroxylative phenol dearomatization/[4+2]-dimerization cascade reactions, affording products in up to 94% ee for the sterically hindered substrates.^{5a,b}

Recently, Fujita, Sugimura, and co-workers reported highly enantioselective oxidative diacyloxylation and 1,3-dioxolane formation reactions using lactate-derived chiral hypervalent iodine (III) reagents, furnishing products in up to 97% ee. This could be successfully applied to the asymmetric synthesis of natural prod-
ucts.^{2d,f,i,k,m} Inspired by the success of lactate-derived Inspired by the success of lactate-derived hypervalent iodine(III) chemistry,^{2a–k,m,3d,f–i,l–n} we developed a facile synthesis of novel chiral hypervalent iodine(V) reagents as a new type of oxidation reagents and their applications to asymmetric hydroxylative dearomatization/[4+2]-dimerization cascade reactions of phenol derivatives.^{5b,c,9}

[⇑] Corresponding author.

Figure 1. Selected examples of reported chiral hypervalent iodine(III) and (V) reagents and their precursors.

Results and discussions

First, chiral hypervalent iodine(V) reagent 2a was prepared by the oxidation of a known compound 7a (Scheme 1). In the initial attempt, 7a was treated with several types of oxidants known to mediate the oxidations of iodoarenes to λ^5 -iodanes. 8 Although NaOCl, $8a,b$ oxone (2KHSO₅.3KHSO₄.3K₂SO₄), $8c-e,13$ and mCPBA^{8f} did not afford any oxidation product even after increasing the amount of oxidant and reaction temperature (Scheme 1-1 to 1-3), use of DMDO (dimethyldioxirane), $8g,h$ a strong oxidant, mediated oxidation of iodoarene 7a to λ^5 -iodane 8a with a full conversion (Scheme 1-4). Decreasing the loading of DMDO to 3 equiv did not affect the conversion of product. Interestingly, when the DMDO loading was decreased to 2 equiv, iodosylarene (λ^3 -iodane) was not observed; a mixture of **7a** and **8a** was obtained.^{[10](#page--1-0)}

Next, the oxidation state of the prepared hypervalent iodine compound 8 was determined (Fig. 2). Because the X-ray crystallographic analysis of 8 failed, another method was attempted. Katritzky and co-workers reported a first confirmation method for the oxidation state of the iodine center by the 13 C NMR chemical shifts of its aromatic ipso-carbon atom $(C_{\text{ipso}}-I^{\text{III}}$ or $-I^{\text{V}})$.^{[11](#page--1-0)} According to their report, the 13C NMR chemical shift of the aromatic *ipso*-carbon atom (C_{ipso} -I^{III}) in λ^3 -iodane is \sim 15 ppm positively shifted from that of iodoarene, whereas the value $(C_{\text{ipso}}-I^{\vee})$ of λ^5 -iodane is \sim 50 ppm positively shifted from that of iodoarene. By referring to their research, we compared the 13 C NMR chemical shift of the *ipso-*carbon atom ($C_{\rm ipso}$ -I^I and -I^{III} or -I^V) between **7a** and **8a**; that value positively shifted by \sim 45 ppm.^{[12](#page--1-0)} This result indicates that the prepared hypervalent iodine reagent is λ^5 -iodane. The results of the elemental analysis of 8e confirmed it as λ⁵-iodane (See Supporting Information).

aConversions were determined by ¹H NMR of crude mixtures ^bUsing 3.0 equiv of DMDO

HRMS (FSI+ in MeCN) Calcd for $C_{20}H_{30}IO_8$ (M+H) 525.0980 Found 525 1000

Anal, Calcd for C₂₀H₂₉IO₈: C, 45.81: H, 5.57 Found: C. 45.76: H. 5.52

Figure 2. Oxidation state determination of 8e.

With the oxidation state information of 8 in hand, several types of chiral λ^5 -iodane derivatives were prepared (Scheme 2). Isopropyl ester 8b and mesityl amide 8c were prepared from the corresponding iodoarenes 7b and 7c in good yields. L-Valine-derived 8d and L-isoleucine-derived 8e were also successfully prepared from the corresponding chiral iodoarenes, which were prepared by the Mitsunobu reactions of 2-iodoresorcinol with chiral alcohols,^{2k} by DMDO oxidations in good-to-excellent yields. Monoester-type chiral λ^5 -iodane reagent **10** was synthesized from the corresponding lactic acid-derived iodoarene 9 in a quantitative yield. The chiral λ^5 -iodanes were characterized by $13C$ NMR chemical shifts and HRMS as mentioned above.¹¹

With chiral λ^5 -iodanes in hand, their preliminary applications to the benchmark enantioselective oxidation reactions were investigated. 6.7 They were applied to the enantioselective hydroxylative dearomatization/[4+2]-dimerization cascade reactions of phenol derivatives, which were first discovered by Porco Jr. and co-workers using a chiral copper complex 9 and conducted using chiral hypervalent iodine reagents by Birman and co-workers [\(Table 1](#page--1-0)). $5c$ 2,6-Dimethylphenol was treated with 1.1 equiv of chiral λ^5 iodanes and 1.1 equiv of acetic acid as the activator in DME at room temperature.^{5c} Although diacetoxy iodoarene 13 did not afford any desired product, the chiral λ^5 -iodane 10 afforded the oxidation product 12 in a moderate yield and with 8% ee. When 8a bearing two lactic acid-derived moieties at both the orthopositions of iodine atom was used as the chiral oxidant, 12 was obtained in 32% yield and with 11% ee. Since diester 8a afforded the oxidation product in slightly increased enantioselectivity, chiral λ^5 -iodanes 8b-8e were screened further. Compound 8b with two bulkier isopropoxycarbonyl groups and bisamide-type 8c produced product 12 in only 10% ee and 11% ee respectively. Chiral λ^5 -iodane 8d bearing bulkier isopropyl groups on its asymmetric centers mediated the reaction with a better outcome $(36\%, 17\% \text{ ee}).^{14}$ $(36\%, 17\% \text{ ee}).^{14}$ $(36\%, 17\% \text{ ee}).^{14}$

To obtain the oxidation product 12 in higher yields and enan-tioselectivities, the reaction conditions were optimized ([Table 2\)](#page--1-0). 5^b After several attempts, the oxidation of 11 was found to be mediated by chiral λ^5 -iodane reagent even at -72 °C in the presence of 3.0 equiv of TFAA (trifluoroacetic anhydride) as an acidic additive in DCM. $8b$ Although 8a afforded only 11% ee of the oxidation product at room temperature, 12 was obtained in 24% ee at -72 °C. Because the enantioselectivity of the product

^aAll yields were isolated product's yields.

Scheme 2. Synthesis of chiral λ^5 -iodane reagents 8 and 10.^a

Download English Version:

<https://daneshyari.com/en/article/5266149>

Download Persian Version:

<https://daneshyari.com/article/5266149>

[Daneshyari.com](https://daneshyari.com)