Tetrahedron Letters 57 (2016) 5103-5107

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Facile synthesis of amino acid-derived novel chiral hypervalent iodine(V) reagents and their applications

Yasushi Yoshida^{a,b,*}, Akina Magara^a, Takashi Mino^{a,b}, Masami Sakamoto^{a,b}

^a Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan ^b Molecular Chirality Research Center (MCRC), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan

ARTICLE INFO

Article history: Received 24 August 2016 Revised 30 September 2016 Accepted 7 October 2016 Available online 8 October 2016

Keywords: Chiral hypervalent iodine(V) reagent Asymmetric synthesis Metal-free oxidation Dearomatization Dimerization

ABSTRACT

Amino acid-derived novel chiral hypervalent iodine(V) reagents were synthesized from the corresponding chiral iodoarenes through DMDO oxidations. Their oxidation states were determined by the ¹³C NMR chemical shifts of the *ipso*-carbon of the iodine atom, HRMS analysis, and elemental analyses. They were applied to the enantioselective hydroxylative dearomatization/[4+2]-dimerization cascade reactions of phenol derivatives to afford the desired products with up to 58% ee.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

Hypervalent iodine reagents such as λ^3 - and λ^5 -iodanes have been widely used as metal-free and mild oxidants in complex molecule syntheses including natural products (Fig. 1).¹ Chiral hypervalent iodine(III) reagents have also been developed as stoichiometric oxidants in enantioselective reactions.² In 2008, Kita and co-workers reported the first highly enantioselective spirotype chiral hypervalent iodine(III) 1 mediated oxidative spirolactonization of phenol derivatives (Kita reaction) with up to 86% ee.²¹ In 2010, Ishihara and co-workers reported the first catalytic highly enantioselective Kita reaction using lactic acid-derived amide type C_2 -symmetric iodoarene **2b** and *m*CPBA co-oxidant with up to 92% ee.^{3m,n} Following this successful synthesis, chiral hypervalent iodine(III) reagents have been widely investigated as both stoichiometric oxidants and catalysts. In the past halfdecade, they have been used as chiral organocatalysts with a stoichiometric amount of achiral co-oxidant.³ They have been successfully applied to many types of transformations such as difluoacyloxylations,^{3d,e,i-n} construction of quaternary rinations,^{3a-c} stereogenic centers,^{3f} and stereoselective rearrangements.^{2g} On the other hand, although achiral hypervalent iodine(V) reagents have been utilized in numerous fascinating transformations,⁴

examples of successful chiral hypervalent iodine(V)-mediated reactions are rare.⁵

Zhdankin and co-workers developed many novel chiral hypervalent iodine(V) reagents such as **4**; some of them afforded enantioselective oxidation products with moderate enantioselectivities.^{5d,e} In 2009, Birman and co-workers reported the preparation of oxazoline-based chiral hypervalent iodine(V) reagents **5**; they were successfully applied to the oxidative dearomatization reactions, affording products in up to 77% enantiomeric excess.^{5c,6} More recently, Pouységu, Quideau, and co-workers demonstrated an excellent preparation of biphenyl-type compounds **6** and salen-type chiral hypervalent iodine(V) reagents and their successful applications to stereoselective hydroxylative phenol dearomatization/[4+2]-dimerization cascade reactions, affording products in up to 94% ee for the sterically hindered substrates.^{5a,b}

Recently, Fujita, Sugimura, and co-workers reported highly enantioselective oxidative diacyloxylation and 1,3-dioxolane formation reactions using lactate-derived chiral hypervalent iodine (III) reagents, furnishing products in up to 97% ee. This could be successfully applied to the asymmetric synthesis of natural products.^{2d,f,i,k,m} Inspired by the success of lactate-derived hypervalent iodine(III) chemistry,^{2a-k,m,3d,f-i,l-n} we developed a facile synthesis of novel chiral hypervalent iodine(V) reagents as a new type of oxidation reagents and their applications to asymmetric hydroxylative dearomatization/[4+2]-dimerization cascade reactions of phenol derivatives.^{5b,c,9}

^{*} Corresponding author.

Figure 1. Selected examples of reported chiral hypervalent iodine(III) and (V) reagents and their precursors.

Results and discussions

First, chiral hypervalent iodine(V) reagent **2a** was prepared by the oxidation of a known compound **7a** (Scheme 1). In the initial attempt, **7a** was treated with several types of oxidants known to mediate the oxidations of iodoarenes to λ^5 -iodanes.⁸ Although NaOCl,^{8a,b} oxone (2KHSO₅·3KHSO₄·3K₂SO₄),^{8c-e,13} and mCPBA^{8f} did not afford any oxidation product even after increasing the amount of oxidant and reaction temperature (Scheme 1-1 to 1-3), use of DMDO (dimethyldioxirane),^{8g,h} a strong oxidant, mediated oxidation of iodoarene **7a** to λ^5 -iodane **8a** with a full conversion (Scheme 1-4). Decreasing the loading of DMDO to 3 equiv did not affect the conversion of product. Interestingly, when the DMDO loading was decreased to 2 equiv, iodosylarene (λ^3 -iodane) was not observed; a mixture of **7a** and **8a** was obtained.¹⁰

Next, the oxidation state of the prepared hypervalent iodine compound **8** was determined (Fig. 2). Because the X-ray crystallographic analysis of **8** failed, another method was attempted. Katritzky and co-workers reported a first confirmation method for the oxidation state of the iodine center by the ¹³C NMR chemical shifts of its aromatic *ipso*-carbon atom (C_{ipso} -I^{III} or -I^V).¹¹ According to their report, the ¹³C NMR chemical shift of the aromatic *ipso*-carbon atom (C_{ipso} -I^{III}) in λ^3 -iodane is ~15 ppm positively shifted from that of iodoarene, whereas the value (C_{ipso} -I^V) of λ^5 -iodane is ~50 ppm positively shifted from that of iodoarene. By referring to their research, we compared the ¹³C NMR chemical shift of the *ipso*-carbon atom (C_{ipso} -I^{II} and -I^{III} or -I^V) between **7a** and **8a**; that value positively shifted by ~45 ppm.¹² This result indicates that the prepared hypervalent iodine reagent is λ^5 -iodane. The results of the elemental analysis of **8e** confirmed it as λ^5 -iodane (See Supporting Information).

^aConversions were determined by ¹H NMR of crude mixtures ^bUsing 3.0 equiv of DMDO

Scheme 1. Optimization of oxidation reaction conditions.^a

HRMS (ESI+ in MeCN) Calcd for $C_{20}H_{30}IO_8$ (M+H) 525.0980 Found 525.1000

Anal. Calcd for C₂₀H₂₉IO₈: C, 45.81; H, 5.57 Found: C, 45.76; H, 5.52

Figure 2. Oxidation state determination of 8e.

With the oxidation state information of **8** in hand, several types of chiral λ^5 -iodane derivatives were prepared (Scheme 2). Isopropyl ester **8b** and mesityl amide **8c** were prepared from the corresponding iodoarenes **7b** and **7c** in good yields. L-Valine-derived **8d** and L-isoleucine-derived **8e** were also successfully prepared from the corresponding chiral iodoarenes, which were prepared by the Mitsunobu reactions of 2-iodoresorcinol with chiral alcohols,^{2k} by DMDO oxidations in good-to-excellent yields. Monoester-type chiral λ^5 -iodane reagent **10** was synthesized from the corresponding lactic acid-derived iodoarene **9** in a quantitative yield. The chiral λ^5 -iodanes were characterized by ¹³C NMR chemical shifts and HRMS as mentioned above.¹¹

With chiral λ^5 -iodanes in hand, their preliminary applications to the benchmark enantioselective oxidation reactions were investigated.^{6,7} They were applied to the enantioselective hydroxylative dearomatization/[4+2]-dimerization cascade reactions of phenol derivatives, which were first discovered by Porco Ir, and co-workers using a chiral copper complex⁹ and conducted using chiral hypervalent iodine reagents by Birman and co-workers (Table 1).^{5c} 2,6-Dimethylphenol was treated with 1.1 equiv of chiral $\hat{\lambda}^5$ iodanes and 1.1 equiv of acetic acid as the activator in DME at room temperature.^{5c} Although diacetoxy iodoarene **13** did not afford any desired product, the chiral λ^5 -iodane **10** afforded the oxidation product 12 in a moderate yield and with 8% ee. When 8a bearing two lactic acid-derived moieties at both the orthopositions of iodine atom was used as the chiral oxidant, 12 was obtained in 32% yield and with 11% ee. Since diester 8a afforded the oxidation product in slightly increased enantioselectivity, chiral λ^5 -iodanes **8b–8e** were screened further. Compound **8b** with two bulkier isopropoxycarbonyl groups and bisamide-type **8c** produced product **12** in only 10% ee and 11% ee respectively. Chiral λ^5 -iodane **8d** bearing bulkier isopropyl groups on its asymmetric centers mediated the reaction with a better outcome (36%, 17% ee).¹⁴

To obtain the oxidation product **12** in higher yields and enantioselectivities, the reaction conditions were optimized (Table 2).^{5b} After several attempts, the oxidation of **11** was found to be mediated by chiral λ^5 -iodane reagent even at -72 °C in the presence of 3.0 equiv of TFAA (trifluoroacetic anhydride) as an acidic additive in DCM.^{8b} Although **8a** afforded only 11% ee of the oxidation product at room temperature, **12** was obtained in 24% ee at -72 °C. Because the enantioselectivity of the product

^aAll yields were isolated product's yields

Scheme 2. Synthesis of chiral λ^5 -iodane reagents **8** and **10**.^a

Download English Version:

https://daneshyari.com/en/article/5266149

Download Persian Version:

https://daneshyari.com/article/5266149

Daneshyari.com