Tetrahedron Letters 52 (2011) 6275-6280

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Transformation of josamycin in alkaline solution—intramolecular S_N2 substitution or E1cB elimination and intramolecular Michael addition?

Piotr Przybylski*, Krystian Pyta

Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland

ARTICLE INFO

Article history: Received 21 July 2011 Revised 1 September 2011 Accepted 16 September 2011 Available online 22 September 2011

Keywords: Josamycin Macrolides Intramolecular S_N2 Stereoselective E1cB elimination Intramolecular Michael addition

ABSTRACT

HO

The conversion of josamycin (1) into its α , β -unsaturated derivative **2** was optimized to avoid formation of undesired josamycin bicyclic derivatives of type **3** under alkali treatment. The influence of various **1**:base stoichiometry, temperature and reaction time on the conversion was monitored by ¹H NMR spectroscopy. Spectroscopic studies indicated clearly that the transformation of **1** in alkaline solution involves as the first step, the formation of α , β -unsaturated derivative **2** via an E1cB stereoselective elimination and as the second step, the intramolecular Michael addition leading to the formation of two diastereomeric bicyclic derivatives **3a** and **3b**.

© 2011 Elsevier Ltd. All rights reserved.

Sixteen-membered macrolides such as the leucomycins (josamycin or leucomycin A_3) belong to a wide and structurally diverse group of medically important pharmaceuticals characterized by a wide spectrum of antimicrobial activity against Gram positive and erythromycin-resistant bacteria, for example, *Streptococcus pyogenes* and *Streptococcus pneumoniae*.^{1–3} Josamycin (**1**) (Fig. 1),

josamycin **1**

2α,3β -unsaturated josamycin 2 bicyclic josamycin derivative 3a

bicyclic josamycin derivative 3b

Figure 1. The structures and atom numbering of compounds 1, 2, 3a and 3b.

14 15

^{*} Corresponding author. Tel.: +48 61 829 1252; fax: +48 61 829 1505. *E-mail address:* piotrp@amu.edu.pl (P. Przybylski).

^{0040-4039/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.09.086

Table 1

¹H NMR monitoring of josamycin conversion under alkali treatment in solution taken at various: temperatures (*T*), reaction time (*t*) and **1**:KOH stoichiometry

Molar ratio 1 : KOH	Ratio ^a of 1:2:3a+3b Temperature reaction time					
	<i>T</i> = 20 °C			<i>T</i> = −20 °C		
	<i>t</i> = 15 min	<i>t</i> = 30 min	<i>t</i> = 60 min	<i>t</i> = 15 min	<i>t</i> = 30 min	<i>t</i> = 60 min
1:0.25	77:20:3	75:21:4	74:21:5	79:21:0	76:24:0	75:25:0
1:0.5	60:31:9	57:33:10	55:33:12	52:48:0	50:50:0	50:50:0
1:0.75	39:45:16	39:43:18	33:46:21	30:70:0	28:72:0	25:75:0
1:1	16:48:36	14:49:37	13:50:37	3:97:0	1:99:0	0:100:0
1:1.25	13:32:55	11:31:58	10:30:60	0:100:0	0:100:0	0:100:0
1:1.5	12:26:62	10:25:65	8:23:69	0:100:0	0:100:0	0:100:0
1:1.75	9:23:68	7:22:71	5:17:78	0:100:0	0:100:0	0:100:0
1:2	1:4:95	0:1:99	0:0:100	0:100:0	0:100:0	0:100:0
1:2.25	0:0:100	0:0:100	0:0:100	0:100:0	0:100:0	0:100:0

^a Calculated from the H-18 resonance integral for 1, 2 and diastereomeric bicyclic products 3a and 3b.

is a safe and well-tolerated macrolide antibiotic which plays an important role in the treatment of respiratory tract infections⁴ and is often used for the treatment of some forms of cancer.⁵ The resistance of some bacterial strains, among respiratory tract pathogens and the growing problem of allergic responses to leucomycins

Figure 2. ¹H NMR spectra (CDCl₃) in the 9.9–9.5 ppm range of **1**:KOH mixtures: (a) at 20 °C after *t* = 60 min, taken at various **1**:KOH ratios: 1:0.5 (orange), 1:1 (pale green), 1:1.5 (green), 1:2 (violet) and for comparison **1** (black) and **2** (red); (b) at -20 °C after *t* = 60 min taken at various **1**:KOH ratios: 1:0.25 (green), 1:0.5 (blue), 1:0.75 (orange), 1:1 (red) and for comparison **1** (black).

have stimulated the search for new alternative agents for the treatment of many bacterial infections.⁶

To date many ether and ester josamycin derivatives have been obtained at C-3^{1/7} of the isovalerylmycarose moiety, and at the C-9^{8,9} and C-3¹⁰ carbon atoms within the aglycone moiety. As established in acidic media this antibiotic undergoes allylic rearrangement yielding isojosamycin,¹¹ whereas Omura et al.¹² reported the conversion of josamycin into a bicyclic derivative in alkaline solution via S_N2 type intramolecular substitution. Our recent results concerned with the synthesis of a new series of α , β -unsaturated josamycin aza-derivatives via 'one-pot' reductive alkylation and elimination reactions¹³ have thrown new light on the mechanism of bicyclic josamycin derivative formation in an alkaline solution and have prompted us to explain this problem.

Figure 3. Comparison of: (a) H-12 integrals in the ¹H NMR spectrum and (b) HPLC for the mixture of diastereomers **3a** and **3b** obtained after conversion of josamycin in an alkaline solution at 1:2 stoichiometry of **1**:KOH ($T = 20 \degree$ C, t = 60 min).

Download English Version:

https://daneshyari.com/en/article/5266363

Download Persian Version:

https://daneshyari.com/article/5266363

Daneshyari.com