ELSEVIER

Contents lists available at SciVerse ScienceDirect

### **Tetrahedron Letters**

journal homepage: www.elsevier.com/locate/tetlet



# Synthesis and solid state study of pyridine- and pyrimidine-based fragment libraries

John Spencer<sup>a,\*</sup>, Hiren Patel<sup>a</sup>, Samantha K. Callear<sup>b</sup>, Simon J. Coles<sup>b</sup>, John J. Deadman<sup>c,†</sup>

- <sup>a</sup> School of Science, University of Greenwich at Medway, Chatham ME4 4TB, UK
- <sup>b</sup> UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- <sup>c</sup>Avexa Ltd, 576 Swan Street, Richmond, Victoria 3121, Australia

#### ARTICLE INFO

Article history: Received 25 May 2011 Revised 29 June 2011 Accepted 29 July 2011 Available online 5 September 2011

Keywords: Heterocycles Microwaves Parallel synthesis Piperazines Flow chemistry

#### ABSTRACT

A library of pyridines and pyrimidines has been synthesised in excellent yields employing microwave and flow chemistry methodologies. Work-up bottlenecks have been facilitated substantially by the use of supported reagents and many of the final compounds have been studied in the solid state by single crystal X-ray diffraction.

Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

Pyridines and pyrimidines are privileged structures found in diverse bioactive molecules, including anticancer agents, CNS acting drugs and antivirals.<sup>1</sup> A number of these bioactive molecules are associated with a piperazine unit, which can add water solubility as well as act as a linker to attach other binding motifs (Fig. 1).<sup>2</sup>

We report here a parallel synthetic route to a library of pyridines and pyrimidines, many of which contain a piperazine group. Our methods include the use of microwave-assisted organic synthesis (MAOS),<sup>3</sup> flow chemistry<sup>4</sup> and supported resins,<sup>5</sup> and are applicable to fragment-based drug discovery, since the molecules, in general, obey the 'rule of three'.<sup>6</sup> The synthetic efforts have been supported by solid state studies; in principle this could be used to

generate coordinates for docking studies of the products into enzymes/receptors for drug discovery.

2-Bromo-5-nitropyridine (1) was found to be a useful starting point for the chemistry herein. Reaction of 1 with cyclic amines 2 and base, in a microwave apparatus, afforded coupled products 3. The Boc-protected analogue 3a was deprotected with TFA affording 3b. Catalytic reduction of compounds 3 gave the amines 4. The addition of 1.2 equiv of different aryl, alkyl or heterocyclic acid chlorides to compound 3b in the presence of PS-NMM (polymersupported *N*-methylmorpholine) (Scheme 1) as a base furnished the corresponding amide derivatives 5a-g in good to excellent yields as yellow solids, after treatment with a nucleophilic



**Figure 1.** Bioactive piperazine-linked pyridines (blue) and pyrimidines (red).

<sup>\*</sup> Corresponding author. Tel.: +44 2083318215; fax: +44 2083319805.

E-mail addresses: j.spencer@gre.ac.uk, j.spencer@greenwich.ac.uk (J. Spencer).

 $<sup>^{\</sup>uparrow}$  Present address: JDJ Bioservices, 576 Swan Street, Richmond, Victoria 3121, Australia.

| Product | R                                                | Isolated               |
|---------|--------------------------------------------------|------------------------|
|         |                                                  | yield (%) <sup>a</sup> |
| 5a      | CH <sub>3</sub>                                  | 90                     |
| 5b      | $C_6H_5$                                         | 56                     |
| 5c      | Су                                               | 98                     |
| 5d      | 4-FC <sub>6</sub> H <sub>4</sub>                 | 99                     |
| 5e      | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | 99                     |
| 5f      | ~~~                                              | 94                     |
|         | s                                                |                        |
| 5g      | who                                              | 95                     |
|         | N-                                               |                        |

Scheme 1. Synthesis of amines 4 and amides 5. Reagents and conditions: (i) Na<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>O, MW, 150 °C, 15 min; (ii) TFA; (iii) RCOCI, CH<sub>2</sub>CI<sub>2</sub>, PS-NMM; (iv) PS-trisamine; (v) H-Cube; 70 °C, Pd/C. alsolated yield after chromatography.

$$\begin{array}{c|c} O_2N & H_2N \\ \hline N & N & 1 & M & N \\ \hline N & 1 & M & min^{-1} \\ \hline 10\% & Pd/C & 6 & R \\ \end{array}$$

| Product | R                                                | Isolated               |
|---------|--------------------------------------------------|------------------------|
|         |                                                  | yield (%) <sup>a</sup> |
| 6a      | CH <sub>3</sub>                                  | 97                     |
| 6b      | C <sub>6</sub> H <sub>5</sub>                    | 93                     |
| 6c      | Cy                                               | 93                     |
| 6d      | $4-FC_6H_4$                                      | 95                     |
| 6e      | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | 96                     |
| 6f      | who                                              | 97                     |
|         | □ S s                                            |                        |
| 6g      | nhn                                              | 91                     |
|         | N-                                               |                        |

6c

N3 C3 C4 C15 C16 F17

C17 C17 C18

C19 C19 C18

6d

**Scheme 2.** Synthesis of amines **6**. <sup>a</sup>Isolated yield after chromatography.

## Download English Version:

# https://daneshyari.com/en/article/5266566

Download Persian Version:

https://daneshyari.com/article/5266566

<u>Daneshyari.com</u>