Tetrahedron Letters 52 (2011) 6003-6006

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

High-yield synthesis of pyrrolidinyl PNA monomers

Pedro Merino^{a,*}, Graziella Greco^{a,b}, Tomás Tejero^a, Ugo Chiacchio^b, Antonino Corsaro^b, Venerando Pistarà^b, Giovanni Romeo^c

^a Laboratorio de Síntesis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC E-50009, Zaragoza, Aragon, Spain

^b Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, Catania 95125, Italy

^c Dipartimento Farmaco-Chimico, Università di Messina, Via, SS Anunziata, Messina 98168, Italy

ARTICLE INFO

Article history: Received 25 July 2011 Revised 26 August 2011 Accepted 30 August 2011 Available online 10 September 2011

Keywords: Pyrrolidines Nitrones Dipolar cycloaddition Nucleoside analogues Peptide nucleic acids

ABSTRACT

Two monomers for the syntheses of conformationally restricted peptide nucleic acids were synthesized through a simple procedure, involving an asymmetric 1,3-dipolar cycloaddition chemistry as a key step, from common starting materials in 3 and 5 steps, and 58.8% and 30.5% overall yields, respectively. © 2011 Elsevier Ltd. All rights reserved.

The discovery of the remarkable biological profiles of peptide nucleic acids (PNA) in 1991 by Nielsen and co-workers¹ has led to the preparation of several types of conformationally restricted cyclic congeners in which an additional bond is introduced into the aminoethyl glycine backbone.² From the several possibilities for constraining the conformation of PNA by including pyrrolidine rings into their backbone,³ the constrained structure *pyr*-PNA **2** (Fig. 1), firstly reported by Nielsen and co-workers⁴ in 2001, has two stereogenic centers in the monomeric unit of the PNA molecule so, up to 4 different diastereomers could be prepared.

In their original paper,⁴ Nielsen and co-workers prepared both (3R,5R) and (3S,5R) monomers **4** in 13 and 15-step sequences and 2.53% and 2.29% overall yields (Scheme 1), respectively, starting from **3** (prepared from pyroglutamic acid in five steps and 49% yield). Compounds **4** were used for preparing the corresponding conformationally restricted PNA and it was found that *pyr*-PNA **2** derived from (3*S*,5*R*) isomer had the highest affinity toward RNA, recognizing both RNA and PNA better than DNA.⁴

Since the Nielsen's report no other synthetic approaches have been communicated to obtain compounds **4** in a more efficient way. In this context, we have recently reported⁵ the synthesis of isoxazolidinyl nucleosides as building blocks for PNA analogues through a strategy based on asymmetric nitrone 1,3-dipolar cycloaddition reactions. The same strategy has also been applied in our

* Corresponding author.

E-mail address: pmerino@unizar.es (P. Merino).

Figure 1. PNA and conformationally restricted analogue pyr-PNA.

laboratories for the synthesis of pyroglutamic acid derivatives⁶ thus demonstrating the synthetic utility of nitrone chemistry for the construction of pyrrolidines.⁷

In this Letter we wish to report a direct asymmetric entry to compounds **4** through an enantioselective 1,3-dipolar cycloaddition between an easily accessible nitrone **A** and a chiral acrylate **B** (Scheme 2). DFT calculations have also been carried out in order to rationalize the stereochemical outcome of the reaction.

Nitrone **8** was generated in situ from commercially available aldehyde **5** and hydroxylamine **6**. Compound **6** was obtained in

Scheme 1. Synthesis of pyr-PNA monomers by Nielsen and co-workers.⁴

Scheme 2. Retrosynthetic analysis for pyr-PNA monomers 4.

three steps from diethyltartrate by sequential treatment with periodic acid⁸ to form ethyl-2-oxoacetate, hydroxylamine hydrochloride, and further reduction of the resulting oxime with borane in pyridine.⁹ Based on the previous results from our¹⁰ and other¹¹ laboratories we chose *N*-acryloyl-(2*R*)-bornane-10,2-sultam **7** as the dipolarophile. The reaction between the three reagents **5**, **6**, and **7** in a sealed tube using toluene as a solvent afforded after 18 h at 60 °C compound **9** in 76% yield¹² (Scheme 3) and complete regio-(3,5), diastereo-(*trans*), and enantioselectivities (3*S*,5*R*). Indeed, after column chromatography of the reaction mixture only one isomer could be detected by NMR. The reduction (N–O cleavage) of compound **9** was first attempted with Zn in acetic acid, a procedure successfully used in our laboratory for promoting the transformation of 5-carboxy isoxazolidines into 3-hydroxy-2-pyrrolidines.¹³ However, under typical reaction conditions (THF, $60 \,^{\circ}$ C, 5 h) a low yield (20%) was obtained. Fortunately, the catalytic hydrogenation of **9** using Pd(OH)₂–C (Pearlman's catalyst) at 2000 psi for 48 h¹⁴ took place in high yield to provide pyrrolidin-2-one **10**.¹⁵ The last step consisting of the introduction of the base moiety (adenine) into the pyrrolidine ring was carried out under Mitsunobu conditions (PPh₃, DIAD, CH₃CN) with the free heterocyclic base. After 16 h at rt compound (3*S*,5*R*)-**11** was obtained in 80% yield (3 steps, 58.8% overall yield).¹⁶

In order to obtain the (3R,5R) isomer compound **10** was subjected to a typical Mitsunobu reaction¹⁷ to afford, after saponification (NaOEt, EtOH) of the intermediate benzoate **12** the pyrrolidin-2-one **13**.¹⁸ Introduction of the base moiety as described for compound **11** furnished **14** in 81% yield. Globally, compound **14** has been obtained in 4 steps and 30.5% overall yield.¹⁹

The relative configuration of compounds **10–14** was ascertained by conventional NMR techniques including 1D NOE, 2D NOESY, COSY, and HMBC experiments. The absolute configuration and stereochemical integrity of compounds **10** and **13** were determined by preparing the corresponding Mosher esters.²⁰ Analysis of the 400 MHz NMR spectra of those esters showed the presence of only one diastereomer in each case, at the limit of detection indicating the enantiomeric purity >98%.

For a successful application of Kakisawa's rule²¹ it is needed a comparison between the values corresponding to a pair of isomers having an opposite configuration. In consequence, we prepared the corresponding Mosher esters derived from (R)- and (S)-Mosher acids²² (Scheme 4) and the ¹H NMR spectra of the pure esters were recorded to calculate the differences in the chemical shift.

According to Kakisawa's rule²¹ the methylene group (H_{4a} and H_{4b}) is selectively shielded by the phenyl group when the two groups are located on the same plane containing H_3 and the carbonyl group (compounds **15a** and **16a**). By defining $\Delta\delta$ as indicated in Scheme 4 (δ_S and δ_R refers to chemical shifts of (*S*)- and (*R*)-MTPA esters, respectively) positive values would indicate a 3*R* configuration, whereas negative values indicate a 3*S* configuration. According to the values illustrated in Scheme 4 it was confirmed

Scheme 3. Synthesis of PNA monomers 11 and 14.

Download English Version:

https://daneshyari.com/en/article/5266590

Download Persian Version:

https://daneshyari.com/article/5266590

Daneshyari.com