Tetrahedron Letters 52 (2011) 4985-4988

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Custom synthesis of substituted butenolides, dihydropyranones, and α -*E*-alkylidenelactones via alkenylalumination

P. Veeraraghavan Ramachandran*, Debarshi Pratihar, Garrett Garner, B. China Raju

Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA

ARTICLE INFO

Article history: Received 27 May 2010 Revised 21 June 2011 Accepted 27 June 2011 Available online 2 July 2011

Keywords: Alkenylalumination Butenolides Dihydropyranones Lactones 1,4-Addition

ABSTRACT

Alkenylalumination of aldehydes with $[\alpha$ -(ethoxycarbonyl)- β -(*t*-butyldimethylsilyloxyalkyl)alkenyl]diisobutylaluminum provides the corresponding α -*Z*-alkylidene- β' -hydroxy esters, which upon protection and treatment with trifluoroacetic acid lactonizes to furnish α -acetoxyalkyl butenolides (n = 1) and dihydropyranones (n = 2) in 40% overall yield. Conjugate addition to these lactenones and concurrent acetate elimination constitute a general and stereospecific synthesis of the corresponding α -*E*-alkylidene lactones.

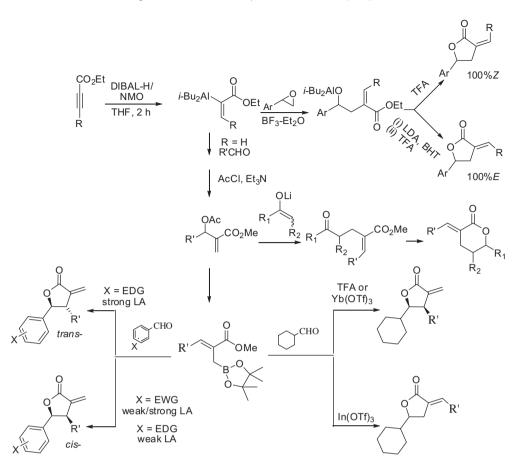
© 2011 Elsevier Ltd. All rights reserved.

 α,β -Unsaturated carbonyl moieties, such as butenolides, pyranones, α -alkylidene- γ -butyrolactones, and - δ -valerolactones, are structural motifs found in a multitude of natural products.¹ α -Alkylidene- γ -lactones display a variety of biological activities,² including COX-2 inhibition, nuclear factor κB inhibition,³ and increased cellular resistance to oxidant injury in HepG2 cells.⁴ Accordingly, there has been considerable interest in the development of efficient protocols for the preparation of α -alkylidene butyrolactones, during the past three decades.⁵ These include free-radical annelation of phenyl selenocarbonates,⁶ Horner-Wadsworth-Emmons condensations of α-phosphono lactones,⁷ the Wittig reaction of α -(triphenylphosphoranylidene)lactones⁸ or Wittig-Horner condensation of α-(dimethoxyphosphonyl)lactones,⁹ the α -formylation of lactones, followed by aldol type condensation,¹⁰ etc. Recently, the Cossy¹¹ and Howell¹² groups independently reported a cross metathesis protocol for the synthesis of β , γ -unsubstituted- α -*E*-alkylidene- γ -butyrolactones. In contrast, there are only few reports on the preparation of α alkylidene valerolactones.¹³

Inefficient, multi-step protocols, poor yields, and or poor E/Z selectivity currently encountered in α -alkylidene lactone syntheses call for new and improved methods.¹⁴ As part of an ongoing project in the pursuit of anti-inflammatory and anti-cancer molecules,¹⁵ we recently reported several protocols for the synthesis of α -methylene and *E*- and *Z*-alkylidene- γ - and δ -lactones. These involved the alkenylalumination of aldehydes as the first step (Scheme 1).^{16–19} The

syntheses of a variety of α -*Z*- or *E*-alkyl(aryl)idene- β , γ -disubstituted- γ -butyrolactones were achieved via either a crotylboration-cyclization¹⁶ or a crotylboration-oxonia-Cope rearrangement-cyclization¹⁷ of aldehydes and alkenylalumination-cyclization of oxiranes.¹⁸ A simple synthesis of α -alkylidene- δ -valerolactones was achieved via the conjugate addition of ketone enolates to functionalized allyl acetates.¹⁹

In continuation, we sought a more versatile, tailored process for α -alkylidene lactones of varying ring sizes and substitutions. We envisioned a general synthesis of β' -substituted- γ -unsubstituted- α -*E*-alkylidene- γ -butyrolactones, and - δ -valerolactones via the alkenylalumination of aldehydes using customized reagents. These latter reagents were formed through the hydroalumination of TBS-protected hydroxy alkynoates (Scheme 2). This process was also meant to provide a general route for the synthesis of functionalized butenolides and dihydropyranones. The results of our study are presented herein.


The required alkynoates were prepared in 90–92% yield from the TBS-protected alkyn-1-ols via deprotonation with *n*-butyllithium at -78 °C, followed by a treatment with ethyl chloroformate in tetrahydrofuran (THF). Ethyl 4-(tert-butyldimethylsilyloxy)but-2-ynoate and ethyl 5-(tert-butyldimethylsilyloxy)pent-2-ynoate were transformed to the corresponding alkenylaluminum reagents **1** and **2** via hydroalumination with DIBAL-H/NMO complex in THF at 0 °C.²⁰ Reagent **1** was mixed with benzaldehyde (**3a**) and stirred for 8 h at 0 °C. Acidic workup provided the α -alkylidene- β -hydroxy- β -phenyl ester (**4a**) in 58% overall yield (Scheme 2).²¹ The generality of this process was then demonstrated by carrying out the reaction with 4-NO₂PhCHO, (**3b**) as well as an aliphatic aldehyde,



^{*} Corresponding author. Tel.: +1 765 494 5303; fax: +1 765 494 0239. *E-mail address*: chandran@purdue.edu (P. Veeraraghavan Ramachandran).

^{0040-4039/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.06.103

Scheme 1. Alkenylalumination route to α -alkylidene/methylene- γ - and δ -lactones.

Scheme 2. Retrosynthetic analysis of β' -substituted- γ -unsubstituted- α -*E*-alkyl-idene- γ -butyrolactones.

cyclohexanecarboxaldehyde (ChxCHO, **3c**). The product hydroxy esters **4b** and **4c** were obtained in 73% yield and 54% yield, respectively. The results are summarized in Table 1. These same aldehydes, when treated with reagent **2**, provided the corresponding alcohols **5a–c**, the precursors for the synthesis of pyranones and δ -valerolactones (Scheme 3, Table 1).

Table 1			
Alkenylalumination	of aldehydes	with 1	1 and 2

Entry	i-Bu O i-Bu'Al OEt	RCHO		R OEt OTBS	
	#	#	R	#	Yield (%)
1	1	3a	Ph	4a	62
2	1	3b	p-NO2-Ph	4b	73
3	1	3c	Chx	4c	54
4	2	3a	Ph	5a	72
5	2	3b	p-NO ₂ -Ph	5b	66
6	2	3c	Chx	5c	55

The preparation of butenolides and dihydropyranones from **4** was completed by the following transformation sequence: Treatment of allylic alcohol **4a** with acetyl chloride and pyridine in dichloromethane afforded the allylic acetate **6a** in 90% yield. Addition of trifluoroacetic acid (TFA), followed by heating the mixture to reflux for 2 h resulted in both the removal of the TBS group and concurrent lactonization to provide the butenolide **8a** in 88% yield—an overall yield of 50% for three steps. This protocol was then extended to allylic alcohols **4b** and **4c** to yield the corresponding acetates **6b** and **6c** and butenolides **8b** and **8c**, respectively (Scheme 4, Table 2).

The above acetylation-cyclization protocols were then utilized to prepare α -substituted dihydropyranones (**9a–c**) from the allylic acetates (**7a–c**), which were derived from the allylic alcohols **5a–c** (Table 2).

Having achieved the preparation of α -substituted butenolides and dihydropyranones, we next focused on their conversion to the corresponding α -alkylidene lactones via a conjugate additionelimination strategy. As representative examples, the endocyclic allylic acetates **8** and **9** were treated with a hydride nucleophile²² to achieve the preparation of β , γ -unsubstituted butyro- and valerolactones. Accordingly, the addition of NaBH₄ to allylic acetate **8a** in methanol at 0 °C provided the α -alkylidene- β , γ -unsubstituted- γ -butyrolactone **10a** in 92% yield within 20 min (Table 2). Examination of the PMR spectrum revealed a chemical shift of δ 6.8 ppm for the olefinic proton, thereby confirming the *E*-stereochemistry of the exocyclic olefin.²³ This was then extended to **8b** and **8c** in 86–91% yields. Preparation of the α -alkylidene- δ -lactones (**11a–c**) was similarly achieved from the dihydropyranones **9a–c** (Table 2). Download English Version:

https://daneshyari.com/en/article/5266828

Download Persian Version:

https://daneshyari.com/article/5266828

Daneshyari.com