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ARTICLE INFO ABSTRACT

Dynamic time warping (DTW) has been widely used for the alignment and comparison of two sequential
patterns. In DTW, dynamic programming is used to avoid an exhaustive search for the alignment. In this
paper, we propose a randomized extension of the DTW concept, termed randomized time warping (RTW),
for motion recognition. RTW generates time elastic (TE) features by randomly sampling the sequential data
while retaining the temporal information. A set of TE features is represented by a low-dimensional sub-
space, called the sequence hypothesis (Hypo) subspace, and the similarity between two sequential patterns
is defined by the canonical angles between the two corresponding Hypo subspaces. In essence, RTW simul-
taneously computes multiple degrees of similarities between a number of warped patterns’ pair candidates,
while in practice, RTW generalizes the Hankel matrix commonly used in modeling of system dynamics.
We demonstrate the applicability of RTW through experiments on gesture recognition using three pub-
lic datasets, namely, the Cambridge gesture database, a subset of the one-shot-learning dataset from the
ChaLearn Gesture Challenge, and the KTH action dataset.
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1. Introduction

Dynamic time warping (DTW), which is also termed dynamic
programming-matching, has been widely used for sequential data
analysis. Early uses of DTW range from the comparison of amino
acids sequences in bioinformatics [1], through speech recogni-
tion [2], to motion analysis [3]. The core idea of DTW is to search for
the best alignment of two sequential patterns by optimizing a warp-
ing function, which specifies the sequential correspondence between
them. Since the number of possible combinations of warped patterns
is exponentially large, to avoid exhaustive search dynamic program-
ming has been used, which can effectively optimize the alignment
score and produce the alignment path of the most similar warped
patterns.

Although DTW is a very useful and widely applicable tool for
sequence analysis, it has several limitations when applied to tasks
of classifying multiple sequences, such as gesture recognition with

¥ This paper has been recommended for acceptance by Matthew Turk.
* Corresponding author.
E-mail addresses: chendra@cvlab.cs.tsukuba.ac.jp (C. Suryanto),
jinghao.xue@ucl.ac.uk (J. Xue), kfukui@cs.tsukuba.ac.jp (K. Fukui).

http://dx.doi.org/10.1016/j.imavis.2016.07.003
0262-8856/© 2016 Elsevier B.V. All rights reserved.

many kinds of hand shapes and personal identification by gait recog-
nition. Here are the issues that we will address in this paper.

1. Since dynamic programming is basically a deterministic
approach, the obtained solution is likely to be sub-optimal for
the sequential data that contains large intra-variation in the
temporal structure.

2. The alignment is typically done by trying to match an input
sequence to each reference sequence in a given set. This can
lead to a high computational cost when the number of the
reference sequences to be considered is large.

3. DTW has no internal mechanism to remove or ignore irrelevant
variation that may affect the classification result. For example,
variation of lighting conditions in video data or speakers in
speech data can significantly lower the performance of a clas-
sification method using DTW. That is, DTW-based classification
methods are sensitive to these undesirable effects.

To tackle these issues, we generalize the notion of DTW to con-
struct a new method for sequential data analysis, which is termed
randomized time warping (RTW). The core idea of RTW is essentially
to simultaneously search for the most similar warped patterns from
a number of candidates which are prepared beforehand through ran-
domization. Fig. 1 illustrates the difference between DTW and our
RTW approach.
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Fig. 1. Comparison between DTW and RTW. (a) DTW searches for the most optimal alignment in a large space through dynamic programming. The outputs of DTW are the most
similar warped patterns and the cost of the alignment. (b) RTW generates many candidate warped patterns, called time elastic (TE) features, and then compares the sets of the
candidates. The outputs of RTW are multiples of the highest similarities between the two sets.

Instead of searching for the most similar warped patterns using
dynamic programming, RTW progressively generates a set of time
warped patterns, called time elastic (TE) features, through repeated
random sub-sampling while preserving the original temporal order.
We utilize this bagging-like strategy to ensure that the set of the
TE features contains sufficient discriminative frames with high prob-
ability. The use of TE features converts the comparison of two
sequences to the comparison of two sets of TE features. Fig. 2 shows
the comparison process between two sets of the TE features. The
comparison is conducted using a subspace-based method, in which
each set of TE features is represented as a low-dimensional subspace,
called a sequence hypothesis (Hypo) subspace. Finally, the similar-
ity between the two sequences is defined by the average of multiple
canonical angles 6; between the two Hypo subspaces. We regard
the canonical vectors that form the canonical angles as pseudo-
warped patterns (further discussion is provided in Section 3.2). This
approach can provide a promising solution to each of the DTW issues
previously mentioned:

1. Since random sampling is able to generate a large number
of time warped patterns (TE features), our RTW approach is
non-deterministic and can deal with a huge number of possi-
ble combinations of warped patterns with various time-scales,
and thus is able to tackle the issue with large intra-variation in
the temporal structure.

2. Since our approach uses the compact subspace-representation,
exhaustive matching between all possible TE features is
avoided. Each Hypo subspace can contain the TE features from
multiple sequences and the canonical angles between two sub-
spaces can be calculated with simple linear algebra. Hence
RTW can alleviate the issue of high computational costs.

3. Our approach is based on a subspace method, which can
remove or reduce the undesirable effects of irrelevant features.
This enables RTW to mitigate the third issue and thus improve
the performance of classification

To demonstrate the effectiveness of our approach, we focus on
gesture recognition in this paper. We conducted experiments on ges-
ture recognition using three public datasets, namely, the Cambridge
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Fig. 2. The comparison process for two sets of TE features in RTW.
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