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A B S T R A C T

Canonical correlation analysis (CCA) has been extensively exploited for modelling Internet multimedia.
However, two major challenges are raised for the classical CCA. First, CCA frequently fails to remove noisy
and irrelevant features. Second, CCA cannot effectively capture the correlation between semantic labels,
which is especially beneficial for annotating web images. In this paper, we propose a new framework that
integrates structural sparsity and low-rank shared subspace into the least-squares formulation of CCA.
Under this framework, multiple label interactions can be uncovered by the shared common structure of the
input space. Meanwhile, a few highly discriminative features can be decided via the structural sparse norm.
Owing to the presence of non-smooth structured sparsity, a new efficient iterative algorithm is derived with
guaranteed convergence. The empirical studies over several popular web image data collections consistently
deliver the effectiveness of our new formulation in comparison with competing algorithms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the proliferation of photo-taking devices and online pic-
ture sharing platforms, automatic image annotation gains growing
interest in the multimedia understanding. However, such unlimited
amount of Internet images pose a considerable challenge for their
organization and retrieval. Even though there are several appealing
annotation models, such as dependence maximization [1], multi-
label linear discriminant analysis [2], Laplacian regularized anno-
tation [3–5] and annotation by mining the label correlation graph
structure [6], how to efficiently annotate these web images still
remains a key research issue in the computer vision community.

One of the typical schemes for manipulating visual features with
textual descriptions is built on canonical correlation analysis (CCA)
which maximally measures the similarities between a pair of data
features, i.e., the high dimensional input feature space and the
dimensionality-reduced label space. Thanks to its desirable theoret-
ical properties, CCA has been successfully leveraged in a large spec-
trum of multimedia analysis tasks, such as three-view cross modal
retrieval [7], multi-modal hashing with correlation maximization [8]
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and feature-aware label space dimensionality reduction [9]. How-
ever, there are several inherent limitations of the standard CCA. Since
dissimilar visual descriptors reflect distinct aspects of the visual
characteristics, the input features commonly concatenate different
visual descriptors, leading to high dimensional visual features in
image annotation. From the perspective of feature selection, there
are typically a small number of informative features for data analy-
sis, but CCA cannot effectively remove the irrelevant/noisy features
and sparsely select the informative ones from the high dimensional
original features. In other words, the assumption of sparsity has
been validated to promote better interpretation and generalization
performance, but CCA cannot be expected to yield the attractive
sparse representation of the projection matrix. Further, the standard
CCA scales cubically with dimensionality due to the computation of
generalized eigen-decomposition.

On the other hand, from the viewpoint of the semantic label
dependence mining, CCA does not take into account the intrinsic
interactions [1,10,11,12] among multiple pre-given labels that are
quite helpful for the annotation problem. Although image annotation
fundamentally concerns the classification problem, unlike the con-
ventional binary classification, we cannot simply decompose the web
image annotation into a series of independent binary classifications
while ignoring the hidden correlation between semantic labels.

Inspired by the equivalence relationship [13] between the least-
squares and the generalized eigen-value problem, we propose a
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new CCA model by simultaneously incorporating the shared com-
mon structure learning and row sparsity-inducing �2,p-norm into
a unified objective, dubbed shared subspace and structural sparse
CCA (SSCCA2,p). Specifically, we employ a row-wise structured spar-
sity regularizer which shrinks some rows of projection functions
to zeros, to identify the essential discriminative features and elim-
inate the redundant and noisy dimensions for predictive functions;
meanwhile, we exploit the shared common structure to encourage
the interactions among different semantic labels so as to compen-
sate for the CCA’s lack of the semantic correlation captured in the
embedded space. Under this scheme, not only can we elucidate the
multiple label dependence unveiled by the shared structure, but
also maximally characterize the similarity between the input fea-
ture space and the label space via CCA. Owing to the inclusion of
the non-smooth row-sparsity term in this unified formulation, we
derive an iterative alternating learning paradigm on the basis of the
efficient randomization scheme to avoid the expensive exact eigen-
decomposition in each iteration. By making use of the learned predic-
tive classifiers, we have conducted extensive evaluations on different
Web image corpora to showcase the competitive advantages of our
model for efficient web image annotation.

2. Related work

To address the annotation issue, many recent methods have been
proposed by capturing the label correlation. We begin with the
multi-label dimensionality reduction via dependence maximization
(MDDM). MDDM [1] utilizes the Hilbert–Schmidt Independence Cri-
terion to maximize the dependence between the input space and the
corresponding labels. MDDM, however, inefficiently adopts a ker-
nel function for the label space to capture the correlation between
multiple labels. Designing and hand-tuning appropriate kernel func-
tions for different label spaces can be time-consuming and requires
domain knowledge.

What is more, based on the incorporation of the normalized
cosine similarity in the label matrix, multi-label linear discriminant
analysis (MLDA) [2] extends the classical linear discriminant analy-
sis, and thus facing the expensive generalized eigenvalue problem as
well. Besides, a new graph structured sparsity model [6] for annota-
tion leverages the element in the cosine label-wise similarity matrix
to respectively scale the associated sparse regularizers, bringing
about a more complicated objective function with very high com-
putational cost. In concrete, the time complexity is O(cd3) at each
iteration (see Table 1 for a list of important notations used in this
paper).

Unlike the above methods which straightforwardly exploits the
label correlation, some other previous works [10,11,12,14] demon-
strate that the shared subspace is particularly helpful in mining the
label dependence. Intuitively, the underlying subspace shared among
multiple labels can be interpreted as the principal components of the
prediction functions. We also borrow the idea of shared subspace to
uncover the correlation among semantic labels. In our framework,
however, the promising joint sparsity-inducing norm �2,p is tailored
to conduct feature learning for the shared structure. Plus we can

Table 1
Some important notations.

Notations: descriptions

n: The number of training samples
d: The dimension of data points
c: The number of multiple semantic labels
r: The shared dimensionality
k: The rank of the training data points X, i.e. k = rank(X)
X ∈ R

d×n: The input space X
L ∈ R

n×c: The label space L
M(c): A matrix is built from the first c columns of the matrix M

flexibly determine the value of p for the purpose of controlling the
sparseness in the process of structural feature learning according to
the unique data set.

Our approach also has connections to CCA-based learning. Moti-
vated by the locally linear embedding, locality preserving CCA
(LPCCA) [15] has been presented to incorporate the local neighbor-
hood relationship into CCA. Nevertheless, LPCCA still requires an
expensive eigen-decomposition step and it may even lose its dis-
criminative ability if the original data space does not satisfy the
underlying smooth manifold assumption (see the experimental out-
come in Section 4.3). In addition to the locality preserving CCA,
the literature provides two recent sophisticated models towards
CCA, including multi-label output codes using CCA (OCCA) [16]
and group-structured sparse CCA (GCCA) [17]. Within the error-
correcting scheme, OCCA has two separate components: encoding
and decoding. In the first encoding stage, OCCA directly uses the stan-
dard canonical output variates as the codewords that are employed
for the subsequent classifer and regression training. In the second
decoding stage, OCCA needs the polynomial time complexity to per-
form a mean field approximation for a predictive distribution on
labels. On the other hand, GCCA [17] imposes overlapping group
lasso penalty on CCA by virtue of the first-order optimization, which
generally inherits the slow convergence rate and polynomial time in
each iteration. On top of that, it could not be easy to determine these
important and sensitive parameters such as the number of overlap-
ping group and the weights of groups in GCCA. Because of their con-
siderably high computational burdens and complicated parameters
tuning, the aforementioned frameworks cannot efficiently handle
large-scale web image data sets.

3. The SSCCA2,p framework

In this section we formulate the problem of the least-squares
CCA under a new framework by simultaneously introducing the
structural sparse norm and the common subspace extracted among
different semantic labels. We first describe the shared structure that
greatly assists the multi-label prediction, then present our new uni-
fied model tackled by an efficient alternating iterative optimization.
Additionally, we use X = {x1, · · · , xn} ∈ R

d×n denoting the n training
data points of dimension d and L ∈ {0, 1}n×c standing for the label
space such that Lj

i = 1 if xi is grouped into j-th label, and 0 other-
wise, where c is the number of labels. Without any loss of generality,
we consider both the input data space X and the label space L are
normalized to have zero mean, i.e.

∑n
i=1 X • i = 0 and

∑n
i=1 Li • = 0.

3.1. Shared subspace with joint sparsity

Following the supervised learning framework, we aim to learn
the projection functions

{
f j
Q (x)

}c

j=1
and the low rank discriminative

subspace Q from the input training data X by minimizing the below
regularized empirical risk:

min
Q ,f j

Q

c∑
j=1

(
n∑

i=1

F( f j
Q (xi), y j

i ) + kG( f j
Q )

)
, (1)

where y j
i is a well-defined response variable, F( • ) is a prescribed

loss function over the labeled data, the regularizer G( • ) measures the
complexity of f j

Q and the tradeoff regularization parameter k controls
the fitness of predictive functions. In order to capture the common
subspace [10,11,12,14] shared among different semantic labels, we
can define the predictive classifier

f j
Q (x) = wT

j x = pT
j x + rT

j QTx, j = 1, . . . , c, (2)
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