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A B S T R A C T

The ability to automatically infer emotional states, engagement, depression or pain from nonverbal behavior
has recently become of great interest in many research and industrial works. This will result in the
emergence of a wide range of applications in robotics, biometrics, marketing and medicine. The Facial Action
Coding System (FACS) proposed by Ekman features objective descriptions of facial movements, character-
izing activations of facial muscles. Achieving an accurate intensity prediction of Action Units (AUs) has
a significant impact on the prediction quality of more high-level information regarding human behavior
(e.g. emotional states). Real-time AU intensity prediction, in many image-related machine learning tasks,
is a high-dimensional problem. For solving this task, we propose adapting the Metric Learning for Kernel
Regression (MLKR) framework focusing on overfitting issues induced in high-dimensional spaces. MLKR
aims at estimating the optimal linear subspace for reducing the squared error of a Gaussian kernel regres-
sor. We introduce Iterative Regularized Kernel Regression (IRKR), an iterative nonlinear feature selection
method combined with a Lasso-regularized version of the original MLKR formulation that improves on the
state-of-the-art results on several AU databases, ranging from prototypical to natural and wild data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Automatic facial expression recognition has recently become
a very active and rapidly evolving research domain. To pre-
cisely describe facial expressions, the Facial Action Coding System
(FACS [1]) encodes Action Units (AUs), which correspond to the
activation of facial muscles.

The ability to accurately predict AU intensity has a signifi-
cant impact on human behavior assessment. During a video, the
ability to describe in each frame what and to what extent facial
muscles are activated gives us a complete description of a sub-
ject’s facial movements. This would contain precious information
regarding mental states [2], depression [3] and pain [4,5] predic-
tion, for instance. Industrial applications that take advantage of AU
predictions are numerous as well. Applications in marketing [6] or
Human–Computer Interaction [7] have recently emerged.
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In this paper, we address three main issues: First, AU automatic
prediction has mainly been seen as a classification problem.
However, the ability to predict muscle activation more precisely
is essential. Very small and short activations of AUs (called micro-
expressions) can be of great value for emotion assessment [8].
Moreover, the dynamics of AUs have an important impact on the
meaning of facial expressions. In [9], the authors worked on classify-
ing two different types of smiles (frustrated and delighted) showing
the relevance of temporal pattern analysis for this task. For those
reasons, multilevel annotated databases have recently been released
(enhanced CK+ [10], DISFA dataset [11], AM-FED dataset [6]), thus
making it possible to build and evaluate new methods suited for
regression tasks. The second issue is that the algorithms should be
run in real time, which is an important constraint for many domains
such as personal robotics and car passenger security. This constraint
encourages fast-to-compute features and fast regression methods.
Finally, some AUs are very rarely activated in natural behavior such
as the Nose Wrinkler (AU9) or Lip Stretcher (AU20). This makes
the number of positive examples small, even when the amount of
acquired video data is important. Thus, a particular focus on the risk
of overfitting on the training data must be made.

We propose a regression method based on a Lasso-regularization
of MLKR included within an iterative nonlinear feature selection
framework. This method lets us project data points into sparse and
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low-dimensional spaces, allowing us to reduce overfitting issues.
In Section 2, we present a brief state of the art of AU predic-
tion methods. Section 3 contains an outline of our framework and
the paper contributions. In Section 4, we present MLKR, on which
our regression method is built, and discuss some of its advantages.
Section 5 describes our proposed regression method. Its application
to AU intensity prediction and the associated results are presented
in Section 6. Finally, we conclude and discuss a few issues and
perspectives in Section 7.

2. Related works

Numerous AU prediction methods have been proposed during
the past decade along with the growing interest in this domain.
Detecting AUs is a supervised machine learning problem. Face-
centered data are acquired (gray-level, RGB and/or depth-map) and
labeled manually. The labels indicate the different muscles activated
by the subject. We then must extract features describing data before
learning a prediction model. Because AUs are related to local changes
in facial expression, it is common to use a facial landmark detector to
localize the different parts of the face (mouth, eyes, nose, eyebrows).
The features can subsequently be extracted on different facial areas.
Those features characterizing data samples are then used for pre-
dicting labels with a supervised machine learning algorithm. Along
the entire data processing chain, from the acquisition sensors to the
prediction method, many questions have been highlighted by past
works. First, the availability of affordable 3D sensors has attracted
many researchers to focus on the utility and contribution of depth-
related data for facial muscle activation predictions and has made the
data type a relevant question. Second, the choice of the areas used
for feature extraction has an important impact. Third, the inclusion
of prior human knowledge when designing high-level features rele-
vant to the task can increase performance but leads to less generic
methods. Similarly, including prior knowledge within the models
(e.g. regarding AU co-occurrences in natural facial expressions) has
also raised questions. Finally, the choice of the learning machines
used to model the data has also been an active topic in past works. In
this section, we will briefly review and discuss some of the main AU
prediction methods recently proposed.

The relevance of using 3-dimensional data for facial expression
recognition has been investigated by several researchers. Sun et
al. [12] used 3D motion vectors and Hidden Markov Models (HMMs)
for predicting AUs and discrete emotions in a Dynamic 3D Facial
Expression Database. Savran et al. [13] extracted local 3D shape fea-
tures (mean and Gaussian curvatures, shape index and curvedness
among others) and use an SVM for predicting AUs in a Bospho-
rus database. However, 3D sensors are not yet widely democra-
tized, and many applications have a need for 2D data solutions,
which explains the numerous recent 2D approaches for AU predic-
tion [11,14,15]. Most of those 2D approaches can be easily extended
to 3D approaches by extracting complementary features using depth
maps in the same way as grayscale or color images.

Before extracting features from images, a common first step in
many face-centered machine learning systems is to detect fiducial
points, which are some key points in faces (centers and corners of
the eyes, contours of the nose, the mouth and the eyebrows). In Jeni
et al. [16] and Chu et al. [17], those fiducial points are used to define
local patches for feature extraction to predict AUs. However, a few
methods [18,19] avoid this part of fiducial point localization, extract-
ing features on somewhat global regions defined only using the area
obtained with the face detector (commonly using the Viola and Jones
algorithm [20]). Yang et al. [18] directly extracted dynamic Haar-like
features after a rescaling the detected face image and then encoded
it with binary patterns before classification using Adaboost [21].
Chuang and Shih [19] divided the face region in upper and lower

parts before using the Support Vector Machine (SVM) on Inde-
pendent Component Analysis (ICA) projections. Other methods use
only eye localization for defining feature extraction areas [10,22].
By definition, AUs are characterized by local movements of face
appearance. This is why the extraction of features in local areas
defined from fiducial points lead to relevant information for our
task. However, using more global areas defined using only the
face region or the centers of the eyes (which are the most accu-
rately located points in most landmark detection methods) can avoid
the spread of possible errors in facial point tracking. The recent
improvement of facial point localization systems can explain the
fact that local areas are increasingly used in AU prediction sys-
tems [15,16,17].

AU prediction methods also differ regarding the amount of
human knowledge included in the feature choice. Some meth-
ods use data-driven features, which often makes the framework
more generic; for example, Chuang and Shih [19] used Independent
Component Analysis (ICA), and Jeni et al. [16] used Non-negative
Matrix Factorization (NMF). Even if it introduces a loss of genericity,
other methods use handcrafted features, which may lead to rele-
vant invariance and characterizations. Rudovic et al. [23] used Local
Binary Patterns (LBPs) that are invariant to illumination changes.
Gabor wavelets are commonly used [10,13,22] and have shown
promising results for AU prediction as noted by Littlewort et al. [24].
However, dense computation of those features for different scales
and orientations quickly becomes time-consuming and unsuited for
real-time algorithms. This can explain the choice of Histograms of
Oriented Gradients (HOGs) made by McDuff et al. [6], which encode
relevant information for expression-relative wrinkle characteriza-
tion while being less time-consuming to extract.

Prior knowledge can also be included in data modeling. Several
researchers have focused on learning dynamic relationships and co-
occurrences between AUs to increase algorithm performance, such
as Tong et al. [10] and Li et al. [14], using Dynamic Bayesian Net-
works (DBNs). These approaches are able to consider correlations
between AUs in natural facial expressions. For instance, eyebrow
raising (AU1+AU2) and upper lid raising (AU5) are often activated
simultaneously. However, AUs correspond to facial muscles and
can be activated independently, making the prior knowledge about
dynamic relations between AUs inadequate in some applications. For
instance, in the context of facial reeducation for patients who had
a cerebrovascular accident (CVA), different muscles may need to be
separately activated by the patient and thus separately recognized.
A prior knowledge inclusion in this case could bias the prediction
system.

Finally, there is the question of the machine learning algorithms
used for building prediction models. In many databases (Cohn–
Kanade [25], Carnegie Mellon University PIE database [26], Fera-
Gemep [27]) AUs are labeled as activated or not, stating the problem
as a classification problem. Thus, Support Vector Machines (SVMs)
have been widely used in the facial expression domain [6,22,28].
However, information given by AU detectors is limited, and many
applications require more comprehensive information—i.e., the
intensity of the AU. In the first few attempts to estimate intensities of
facial expression [29,30,31,32], only binary labels were used to train
classifiers such as SVM or AdaBoost. Intensities were thus inferred
from the output of the classifier (e.g., the signed distance from the
sample to the separating hyperplane of the SVM [29,31] or the con-
fidence of the decision in the case of AdaBoost classifier [30,32]).
These approaches assume that facial expression intensity is directly
related to the distance from the decision boundary. The idea is that
samples corresponding to low intensities are more difficult to clas-
sify and are thus more likely to be near the boundary. This point
is questionable because the difficulty of classifying a sample can
be due to other unrelated factors such as lighting conditions and
morphological characteristics.
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