FISEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Deoxygenation/dimerization of sugar derivatives with BF $_3$ ·Et $_2$ O-Et $_3$ SiH: synthesis of a β -isonucleoside

Subhrangshu Mukherjee *, Biswajit G. Roy, Soumendra N. Das, Sukhendu B. Mandal

Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India

ARTICLE INFO

Article history: Received 1 June 2012 Revised 25 June 2012 Accepted 27 June 2012 Available online 3 July 2012

Keywords:
Boron trifluoride-etherate
Triethylsilane
Deoxygenation
Dimerization
Synthesis
Isonucleosides

ABSTRACT

Lewis acid- E_3 SiH induced deoxygenation of anomeric carbon of sugars generates tetrahydrofuran derivatives, accompanied by hitherto unknown dimeric products. If the reagent addition steps are reversed, tetrahydrofuran derivatives are obtained as the sole products, while only the dimeric products are isolated if E_{13} SiH is excluded. One of the deoxygenated products has been transformed into a β -isonucleoside.

© 2012 Elsevier Ltd. All rights reserved.

Self-glycosylation reaction for the generation of disaccharides is scarcely reported. Formation of di-D-fructose dianhydrides via acid catalyzed dimerization¹ of D-fructose, sucrose or inulin through a fructosyl oxocarbenium cation and in situ glycosylation into the respective disaccharide has been demonstrated by Mellet and García Fernández group.² Very recently, a report by Uriel et al.³ disclosed the use of self-glycosylation for stereoselective formation of disaccharides from mannose-derived orthoesters by treatment with BF3:Et2O. The role of BF3:Et2O for the cleavage of acetonide protection and as promoter in glycosylation reaction in a tandem manner has been clearly revealed in these reactions. It appeared that during the self-glycosylation reaction occurring through oxocarbenium ion, in situ addition of a hydride donor that could act in the presence of the Lewis acid to reduce the double bond would prevent glycosylation and generate solely 3-hydroxytetrahydrofuran derivatives (deoxygenated products), which could be transformed to bioactive isonucleosides⁴⁻⁷ via nucleophilic displacement of 3-OH group by nucleobases (Fig. 1). However, if glycosvlation and hydride addition compete with each other, the reaction could afford both deoxygenated and dimerized products. This realization has encouraged us to exploit this strategy for the stereoselective preparation of D-glucose-based chiral 3-hydroxytetrahydrofuran derivatives and di-p-glucose 1,2':1',2-dianhydrides (dimeric products), and the results are described herein.

The starting sugar based precursor **5** was derived from 3-O-benzyl xylose, whereas **6** and **9** were obtained from the corresponding dihydroxymethyl derivatives^{9,10} via benzylation. Compounds **7**, ¹¹ **8**, ¹² **10**, ¹³ and **11** ¹⁴ were prepared following the literature methods. For the deoxygenation of the anomeric carbon, the starting synthons (type **A**, Scheme 1) **5–11** (Table 1) were treated with Et₃SiH in the presence of BF₃·Et₂O. ^{15,16} Interestingly, treatment of BF₃·Et₂O at first followed by Et₃SiH (Method I)¹⁷ furnished the normal tetrahydrofuran derivatives (type **B**) **12**, **14**, **16**, **18**, **20**, **22**, and **24** (27–45% yields) along with the hitherto unknown dimeric products (type **C**) **13**, **15**, **17**, **19**, **21**, **23**, and **25** (32–38% yields) (Table 1). However, reversal of the addition schedule to employ Et₃SiH first and then BF₃·Et₂O ensured exclusive formation of the deoxygenated products in 67–78% yields (Method II). ¹⁷ On the other hand,

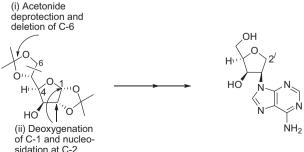


Figure 1. A strategy to generate isonucleosides.

E-mail address: bantim_2006@rediff.com (S. Mukherjee).

HO
(ii) De
of Csidati
* Corresponding author.

$$\begin{array}{c} \text{Method I:} \\ \text{(i) BF}_3. \, \text{Et}_2\text{O} \\ \text{CH}_2\text{Cl}_2, \, 0 \, ^{\circ}\text{C}, \, 15 \, \text{min} \\ \text{R}^2 \\ \text{R}^3 \quad \text{A} \\ \end{array} \begin{array}{c} \text{CH}_2\text{Cl}_2, \, 0 \, ^{\circ}\text{C}, \, 15 \, \text{min} \\ \text{(ii) Et}_3\text{SiH} \, (4 \, \text{equiv.}), \, 2 \, \text{h, rt} \\ \text{R}^3 \quad \text{B} \\ \end{array} \begin{array}{c} \text{Method II:} \\ \text{(i) Et}_3\text{SiH} \, (4.0 \, \text{equiv.}), \\ \text{CH}_2\text{Cl}_2, \, 0 \, ^{\circ}\text{C}, \, 15 \, \text{min} \\ \text{(ii) BF}_3. \, \text{Et}_2\text{O} \, (2 \, \text{equiv.}), \, 2 \, \text{h, rt} \\ \end{array} \begin{array}{c} \text{R}^1 \quad \text{O} \\ \text{R}^3 \quad \text{B} \\ \end{array} \begin{array}{c} \text{R}^1 \quad \text{O} \\ \text{R}^3 \quad \text{B} \\ \end{array} \end{array}$$

Scheme 1. Deoxygenation of anomeric carbon and dimerization of sugar.

Table 1Reaction of sugar derivatives with BF₃·Et₂O-Et₃SiH

Entry	Starting sugar	Deoxygenated product	Yield (%)		Dimeteric product	Yield (%)	
			Method I	Method II		Method I	Method II
1	BnO 5	BnO 0 BnO 12 OH	42	78	BnO 13 O O BnO	33	75
2	BnO 6 0	BnO 0 BnO 14 OH	27	67	BnO OBn OBn OBn OBn OBn OBn OBn OBn OBn	37	72
3	C ₃ H ₇ BnO 7 0	O C ₃ H ₇ BnO 16 OH	35	72	OBn C ₃ H ₇ BnO 17	35	80
4	8 70	0 18 OH	38	72	0,0,	36	78
5	BnO O O O O O O O O O O O O O O O O O O	BnO O O O O O O O O O O O O O O O O O O	42	75	BnO OBn 21 OBn	32	73
6	BnO H O H	BnO H OH	45	71	BnO H O O H OBn 23	36	79
7	BnO 0 10	BnO 0 24 OH	44	69	BnO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38	70

the use of BF₃·Et₂O as the sole reagent furnished the dimeric products exclusively in 70–80% yields (Method III). ¹⁷ All the products were characterized by ¹H and ¹³C NMR besides MS analyses. ¹⁸ The presence of an extra CH_2 signal ($\sim \delta$ 70.0) and absence of the

anomeric carbon signal in the ¹³C NMR spectra, coupled with the absence of signals for isopropylidene methyl and the anomeric proton in the ¹H NMR spectra of the deoxygenated products indicated the successful reduction of the anomeric position. However,

Download English Version:

https://daneshyari.com/en/article/5267488

Download Persian Version:

https://daneshyari.com/article/5267488

<u>Daneshyari.com</u>