ELSEVIER Contents lists available at SciVerse ScienceDirect ## **Tetrahedron Letters** journal homepage: www.elsevier.com/locate/tetlet # DBU-promoted alkylation of alkyl phosphinates and H-phosphonates Laurent Gavara[†], Christelle Petit[†], Jean-Luc Montchamp^{*} Department of Chemistry, Box 298860, Texas Christian University, Fort Worth, Texas 76129, United States #### ARTICLE INFO Article history: Received 6 July 2012 Accepted 8 July 2012 Available online 16 July 2012 Keywords: Alkylation H-Phosphinate H-Phosphonates DBU #### ABSTRACT The alkylation of alkyl phosphinates and some *H*-phosphonate diesters is promoted by the base DBU. Only more reactive alkyl halides react in preparatively useful yields. However, the method provides easy access to important *H*-phosphinate building blocks, without the need for a protecting group strategy or metal catalysts. The reaction is conveniently conducted at, or below, room temperature. The preparation of methyl-*H*-phosphinate esters is particularly interesting as it avoids the heretofore more common use of methyldichlorophosphine MePCl₂. © 2012 Elsevier Ltd. All rights reserved. Forming H-phosphinates through the direct base-promoted alkylation of alkyl phosphinates [ROP(O)H₂] is a known and useful reaction, but is quite rare. This is because of the instability of the corresponding P(III) anion: ROP(OM)H.2 A few years ago, we reported a method to achieve this transformation, based on *n*-butyllithium deprotonation at low temperature (-78 °C). 1b Although the reaction was successful on a variety of electrophiles, foulsmelling reaction mixtures were sometimes obtained due to some unavoidable decomposition of the intermediate phosphinate anion. In our report, two examples using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) at room temperature (instead of n-BuLi at -78 °C) were also disclosed. On the other hand, the base-promoted or base-catalyzed conjugate addition of alkyl phosphinates to Michael acceptors is much more common.³ Alkylation with less reactive electrophiles typically requires a protecting group strategy (Ciba-Geigy reagents (EtO)₂CRP(O(OEt)H, R = H, Me; bis(trimethylsilyloxy)phosphine, or (dialkoxy)phosphine-borane complexes $(R^1O)(R^2O)P(BH_3)H$) in order to obtain acceptable yields of H-phosphinate esters and avoid extensive decomposition of the phosphinate nucleophile.4 Herein, we report on the practical DBU-promoted alkylation of alkyl phosphinates with reactive electrophiles, as well as an extension to diphenylphosphite (PhO)₂P(O)H and other reactive H-phosphonates. Because DBU seemed promising in our initial report, ^{1b} we decided to investigate more thoroughly the scope of this reaction. Using iodomethane (1.1 equiv) as the electrophile, and EtOP(O)H₂ as the nucleophile, various bases were tested (1.1 equiv, 0 °C, CH₃CN) and the product formation was established by ³¹P NMR: DBU (85%), TBD (81%), TMG (65%), DBN (49%), DABCO (0%), and ${\rm Et_3N}$ (0%).⁵ Thus, DBU was retained as the base of choice. For the solvent, ${\rm CH_3CN}$ was found to be ideal, both for its convenience to prepare the alkyl phosphinate⁶ and the subsequent alkylation step. Toluene and DMF could also be employed, but the overall yield was lower. Based on the above experiments, standard conditions were used with a variety of electrophiles. The results are reported below (Table 1). As expected, less reactive electrophiles such as 1-iodooctane cannot be employed successfully. Other electrophiles tested included bromoacetonitrile, propargyl chloride and bromide, benzyl and allyl chloride, and 1-iodooctane, but in all cases the ³¹P NMR yield of alkylation was in the 0-15% range. Additionally, very reactive electrophiles (C₆F₅CH₂Br, 2-O₂NC₆H₄CH₂Br) were also unsatisfactory, perhaps because Atherton-Todd-like P-halogenation becomes the major pathway, resulting in the nearly quantitative formation of (EtO)₂P(O)H.⁷ Consistent with this, using the less reactive 2-nitrobenzyl chloride is better (48% NMR yield). Although limited in its scope, the present reaction is very convenient to run, does not produce foul-smelling reaction mixtures, and delivers very useful products such as methyl-H-phosphinate 3 (entry 3). Whereas we^{1b} and Gallagher^{1a} have prepared methyl-H-phosphinate esters by direct alkylation, the present method is significantly simpler. Additionally, CH₃P(O)(OR)H is still most often made through the esterification/hydrolysis of methyldichlorophosphine CH₃PCl₂ (which is itself made from the Kinnear–Perren reaction: CH₃Cl + AlCl₃ + PCl₃ followed by reduction with aluminum).⁸ Although available commercially, methyldichlorophosphine is not only hazardous (toxic, pyrophoric) but also expensive. We have previously prepared several allylic- and benzylic-*H*-phosphinates similar to those in Table 1. However, the syntheses use either expensive palladium-catalyzed cross-coupling, ^{9,10} or multistep reactions. ¹¹ For example, ethyl (2-bromobenzyl)-*H*-phosphinate **5a** (entry 9a) was previously synthesized using the ^{*} Corresponding author. Tel.: +1 817 257 6201; fax: +1 817 257 5851. E-mail address: j.montchamp@tcu.edu (J.-L. Montchamp). $^{^{\}dagger}$ These two authors contributed equally to this work. **Table 1**DBU-promoted alkylation of phosphinates ROP(O)H₂ with electrophiles | Entry | Rª | Solvent
Temp | Electrophile
BnCl | Product | | | ³¹ P-
NMR
yield
(%) | Isolated yield (%) ^b | |-------|--------------------|------------------------------|----------------------|----------|--------------------------|----------|---|---------------------------------| | 1a Et | Et | CH ₃ CN | | | 0 | | 15 | - | | 1b | Et | 0 °C | BnBr | RO | -Ľ Ph | 1a | 95 | 83 | | 1c | Me | 0 C | BnBr | `H | `H | 1b | 78 | 67 | | 2 | Et | CH ₃ CN
-20 °C | AllylBr | RO: | O Ph
H O H | 2 | 87 | 72 | | 3a | Bu | toluene | | | | 3a | 76 | 74 ^c | | 3b | Ph ₂ CH | CH_3CN | MeI | _ | _ <u>I</u> I_Me | 3b | 59 | 48 | | 3c | Men | Cyclohexane 0 °C | Mei | R | O
D-P
H | 3c | 100 | 60 ^d | | | | | | $R^1 =$ | 0 | | | | | 4a | | CH ₃ CN | | prenyl | 0
RO-P(R ¹ | 4a
4b | 77 | 53 ^e | | 4b | Et | 0 °C | R ¹ Br | cinnamyl | н
КО-Ь | 4b | 83 | 61 | | 4c | | U C | | geranyl | | 4c | 81 | 64 | | 5a | _ | CH ₃ CN | | X = Br | O X | 5a | 72 | 56 | | 5b | Et | - 20 °C | $2-XC_6H_4CH_2Br$ | X = I | RO-P | 5b | 92 | 78 | a ROP(O)H₂ were prepared from H₃PO₂ as follows: R = Me, PrSi(OMe)₃ esterification; R = Et, Me₂Si(OR)₂ esterification; R = Bu, Dean-Stark esterification in refluxing toluene; R = CHPh₂, esterification with Ph₂CN₂; the typical reaction time was 2 h; R = Men, Dean-Stark esterification in refluxing cyclohexane. alkylation of the Ciba-Geigy reagent with LiHMDS in 60% overall yield. ¹¹ Compound **5a** can be converted into interesting P,N-heterocycles (Eq. 1). ¹¹ The present DBU-promoted reaction is significantly simpler and at least comparable in isolated yield to a variety of other approaches based on cross-coupling or alkylation. Furthermore, tandem processes are also possible. Eq. 2 shows some conjugate additions with acrylonitrile. Ethyl(2-cyanoethyl)methylphosphi- nate **6c** has been prepared previously (starting from MePCl₂) as a key intermediate in the synthesis of a potent GABA_B agonist. ^{4h} Another reaction is the tandem cross-coupling of CH₃P(O)(OR)H **3** with aryl halides. Scheme 1 provides an interesting example. Palladium-catalyzed cross-coupling ¹² of **3a** gave product **7**, which was subsequently converted into *P*-heterocycle **8** via Dieckmann-like condensation. Similar cross-coupling products have only been synthesized via the nickel-promoted cross-coupling of methylphosphonites (MeP(OR)₂ again derived from MePCl₂). ¹³ Unlike the alkylation of alkyl phosphinates, the base-promoted alkylation of *H*-phosphonates (RO)₂P(O)H is very well known (Michaelis–Becker reaction) under a variety of basic conditions (NaH, Na, Cs₂CO₃/Bu₄NI, etc.).¹⁴ Because diphenylphosphite is unusually acidic (i.e. the formation of its P(III) tautomer is less unfavorable than with alkyl esters),¹⁵ its DBU-promoted alkylation was investigated under conditions similar to those developed for alkyl phosphinates (Table 2). Since (PhO)₂P(O)H is commercially available, a variety of solvents can be employed directly. This time, even less reactive electrophiles such as 1-iodooctane (entry 3) and 1-iodobutane (entry 4a) reacted in useful yield, and in this case DMF proved superior to acetonitrile. However, 1-bromooctane only gave a 40% NMR yield under a variety of conditions (entry 4b). Despite the fact that numerous methods have been reported for the alkylation of *H*-phosphonates, the present conditions are ^b Products were isolated by chromatography over silica gel. ^c This product was obtained without chromatography and contains 0.5 equiv of residual BuOH. d Obtained as a 1:1 mixture of diastereoisomers. e 1.4 equiv was used. ### Download English Version: # https://daneshyari.com/en/article/5267505 Download Persian Version: https://daneshyari.com/article/5267505 <u>Daneshyari.com</u>