ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

DBU-promoted alkylation of alkyl phosphinates and H-phosphonates

Laurent Gavara[†], Christelle Petit[†], Jean-Luc Montchamp^{*}

Department of Chemistry, Box 298860, Texas Christian University, Fort Worth, Texas 76129, United States

ARTICLE INFO

Article history: Received 6 July 2012 Accepted 8 July 2012 Available online 16 July 2012

Keywords: Alkylation H-Phosphinate H-Phosphonates DBU

ABSTRACT

The alkylation of alkyl phosphinates and some *H*-phosphonate diesters is promoted by the base DBU. Only more reactive alkyl halides react in preparatively useful yields. However, the method provides easy access to important *H*-phosphinate building blocks, without the need for a protecting group strategy or metal catalysts. The reaction is conveniently conducted at, or below, room temperature. The preparation of methyl-*H*-phosphinate esters is particularly interesting as it avoids the heretofore more common use of methyldichlorophosphine MePCl₂.

© 2012 Elsevier Ltd. All rights reserved.

Forming H-phosphinates through the direct base-promoted alkylation of alkyl phosphinates [ROP(O)H₂] is a known and useful reaction, but is quite rare. This is because of the instability of the corresponding P(III) anion: ROP(OM)H.2 A few years ago, we reported a method to achieve this transformation, based on *n*-butyllithium deprotonation at low temperature (-78 °C). 1b Although the reaction was successful on a variety of electrophiles, foulsmelling reaction mixtures were sometimes obtained due to some unavoidable decomposition of the intermediate phosphinate anion. In our report, two examples using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) at room temperature (instead of n-BuLi at -78 °C) were also disclosed. On the other hand, the base-promoted or base-catalyzed conjugate addition of alkyl phosphinates to Michael acceptors is much more common.³ Alkylation with less reactive electrophiles typically requires a protecting group strategy (Ciba-Geigy reagents (EtO)₂CRP(O(OEt)H, R = H, Me; bis(trimethylsilyloxy)phosphine, or (dialkoxy)phosphine-borane complexes $(R^1O)(R^2O)P(BH_3)H$) in order to obtain acceptable yields of H-phosphinate esters and avoid extensive decomposition of the phosphinate nucleophile.4

Herein, we report on the practical DBU-promoted alkylation of alkyl phosphinates with reactive electrophiles, as well as an extension to diphenylphosphite (PhO)₂P(O)H and other reactive H-phosphonates. Because DBU seemed promising in our initial report, ^{1b} we decided to investigate more thoroughly the scope of this reaction. Using iodomethane (1.1 equiv) as the electrophile, and EtOP(O)H₂ as the nucleophile, various bases were tested (1.1 equiv, 0 °C, CH₃CN) and the product formation was established by ³¹P NMR: DBU (85%), TBD (81%), TMG (65%), DBN (49%), DABCO (0%), and

 ${\rm Et_3N}$ (0%).⁵ Thus, DBU was retained as the base of choice. For the solvent, ${\rm CH_3CN}$ was found to be ideal, both for its convenience to prepare the alkyl phosphinate⁶ and the subsequent alkylation step. Toluene and DMF could also be employed, but the overall yield was lower.

Based on the above experiments, standard conditions were used with a variety of electrophiles. The results are reported below (Table 1). As expected, less reactive electrophiles such as 1-iodooctane cannot be employed successfully. Other electrophiles tested included bromoacetonitrile, propargyl chloride and bromide, benzyl and allyl chloride, and 1-iodooctane, but in all cases the ³¹P NMR yield of alkylation was in the 0-15% range. Additionally, very reactive electrophiles (C₆F₅CH₂Br, 2-O₂NC₆H₄CH₂Br) were also unsatisfactory, perhaps because Atherton-Todd-like P-halogenation becomes the major pathway, resulting in the nearly quantitative formation of (EtO)₂P(O)H.⁷ Consistent with this, using the less reactive 2-nitrobenzyl chloride is better (48% NMR yield). Although limited in its scope, the present reaction is very convenient to run, does not produce foul-smelling reaction mixtures, and delivers very useful products such as methyl-H-phosphinate 3 (entry 3). Whereas we^{1b} and Gallagher^{1a} have prepared methyl-H-phosphinate esters by direct alkylation, the present method is significantly simpler. Additionally, CH₃P(O)(OR)H is still most often made through the esterification/hydrolysis of methyldichlorophosphine CH₃PCl₂ (which is itself made from the Kinnear–Perren reaction: CH₃Cl + AlCl₃ + PCl₃ followed by reduction with aluminum).⁸ Although available commercially, methyldichlorophosphine is not only hazardous (toxic, pyrophoric) but also expensive.

We have previously prepared several allylic- and benzylic-*H*-phosphinates similar to those in Table 1. However, the syntheses use either expensive palladium-catalyzed cross-coupling, ^{9,10} or multistep reactions. ¹¹ For example, ethyl (2-bromobenzyl)-*H*-phosphinate **5a** (entry 9a) was previously synthesized using the

^{*} Corresponding author. Tel.: +1 817 257 6201; fax: +1 817 257 5851. E-mail address: j.montchamp@tcu.edu (J.-L. Montchamp).

 $^{^{\}dagger}$ These two authors contributed equally to this work.

Table 1DBU-promoted alkylation of phosphinates ROP(O)H₂ with electrophiles

Entry	Rª	Solvent Temp	Electrophile BnCl	Product			³¹ P- NMR yield (%)	Isolated yield (%) ^b
1a Et	Et	CH ₃ CN			0		15	-
1b	Et	0 °C	BnBr	RO	-Ľ Ph	1a	95	83
1c	Me	0 C	BnBr	`H	`H	1b	78	67
2	Et	CH ₃ CN -20 °C	AllylBr	RO:	O Ph H O H	2	87	72
3a	Bu	toluene				3a	76	74 ^c
3b	Ph ₂ CH	CH_3CN	MeI	_	_ <u>I</u> I_Me	3b	59	48
3c	Men	Cyclohexane 0 °C	Mei	R	O D-P H	3c	100	60 ^d
				$R^1 =$	0			
4a		CH ₃ CN		prenyl	0 RO-P(R ¹	4a 4b	77	53 ^e
4b	Et	0 °C	R ¹ Br	cinnamyl	н КО-Ь	4b	83	61
4c		U C		geranyl		4c	81	64
5a	_	CH ₃ CN		X = Br	O X	5a	72	56
5b	Et	- 20 °C	$2-XC_6H_4CH_2Br$	X = I	RO-P	5b	92	78

 a ROP(O)H₂ were prepared from H₃PO₂ as follows: R = Me, PrSi(OMe)₃ esterification; R = Et, Me₂Si(OR)₂ esterification; R = Bu, Dean-Stark esterification in refluxing toluene; R = CHPh₂, esterification with Ph₂CN₂; the typical reaction time was 2 h; R = Men, Dean-Stark esterification in refluxing cyclohexane.

alkylation of the Ciba-Geigy reagent with LiHMDS in 60% overall yield. ¹¹ Compound **5a** can be converted into interesting P,N-heterocycles (Eq. 1). ¹¹

The present DBU-promoted reaction is significantly simpler and at least comparable in isolated yield to a variety of other approaches based on cross-coupling or alkylation. Furthermore, tandem processes are also possible. Eq. 2 shows some conjugate additions with acrylonitrile. Ethyl(2-cyanoethyl)methylphosphi-

nate **6c** has been prepared previously (starting from MePCl₂) as a key intermediate in the synthesis of a potent GABA_B agonist. ^{4h} Another reaction is the tandem cross-coupling of CH₃P(O)(OR)H **3** with aryl halides. Scheme 1 provides an interesting example. Palladium-catalyzed cross-coupling ¹² of **3a** gave product **7**, which was subsequently converted into *P*-heterocycle **8** via Dieckmann-like condensation. Similar cross-coupling products have only been synthesized via the nickel-promoted cross-coupling of methylphosphonites (MeP(OR)₂ again derived from MePCl₂). ¹³

Unlike the alkylation of alkyl phosphinates, the base-promoted alkylation of *H*-phosphonates (RO)₂P(O)H is very well known (Michaelis–Becker reaction) under a variety of basic conditions (NaH, Na, Cs₂CO₃/Bu₄NI, etc.).¹⁴ Because diphenylphosphite is unusually acidic (i.e. the formation of its P(III) tautomer is less unfavorable than with alkyl esters),¹⁵ its DBU-promoted alkylation was investigated under conditions similar to those developed for alkyl phosphinates (Table 2). Since (PhO)₂P(O)H is commercially available, a variety of solvents can be employed directly. This time, even less reactive electrophiles such as 1-iodooctane (entry 3) and 1-iodobutane (entry 4a) reacted in useful yield, and in this case DMF proved superior to acetonitrile. However, 1-bromooctane only gave a 40% NMR yield under a variety of conditions (entry 4b). Despite the fact that numerous methods have been reported for the alkylation of *H*-phosphonates, the present conditions are

^b Products were isolated by chromatography over silica gel.

^c This product was obtained without chromatography and contains 0.5 equiv of residual BuOH.

d Obtained as a 1:1 mixture of diastereoisomers.

e 1.4 equiv was used.

Download English Version:

https://daneshyari.com/en/article/5267505

Download Persian Version:

https://daneshyari.com/article/5267505

<u>Daneshyari.com</u>