ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Reprint of: Synthesis of a tricyclic core of rameswaralide *

Barry M. Trost a,*, Hien M. Nguyen b, Christopher Koradin a

ARTICLE INFO

Article history: Received 31 August 2010 Revised 8 September 2010 Accepted 13 September 2010

Keywords: Ruthenium Cycloaddition The fused bicyclic system Reductive radical cyclization Total synthesis

ABSTRACT

A tricyclic core containing a 5,7-fused bicyclic unit of rameswaralide was prepared starting from a 1,6-enyne. The synthetic sequence involved (i) ruthenium-catalyzed [5+2]-cycloaddition of 1,6-enyne, (ii) an acyl radical based approach to construct the lactone, and (iii) a regioselective installation of the conjugated double bond by a concomitant sulfenylation-dehydrosulfenylation sequence.

© 2010 Elsevier Ltd. All rights reserved.

Rameswaralide (1), a novel diterpene with a tetracyclic ring skeleton, was isolated from the soft coral *Sinularia dissecta* near the Mandapam coast of India in 1998 (Figure 1). Its relative stereochemistry was determined by analysis of HNMR coupling constants and NOESY correlations. The structure of 1 was further confirmed by selective reduction of the enolic group with NaBH₄ to form the corresponding dihydrorameswaralide (2). It was reported that rameswaralide (1), and its derivatives, could function as effective anti-inflammatory agents for the treatment of a variety of inflammatory disorders, including arthritis, psoriasis, and inflammatory bowel disease.²

Rameswaralide (1) is a highly oxygenated natural product containing a variety of functional groups, including a tertiary hydroxyl group, a carbonyl moiety, a fully enolized β -ketoester, a γ -lactone, and an isopropylidene group (Fig. 1). Furthermore, it contains *cis*fusions at the AB- and BC-ring junctions. Due to its complex features and biological importance, rameswaralide (1) is a good target for total synthesis. To date, the total synthesis of 1 has not been reported, but several reported approaches have appeared. Herein, we report the synthesis of the tricyclic core 3 containing a 5,7-fused bicyclic (AB-ring) unit of rameswaralide (1) (Fig. 2).

Retrosynthetically, the tricyclic compound **3** (Fig. 2) could be accessed from chemoselective epoxidation of vinylsilane **4**. In turn,

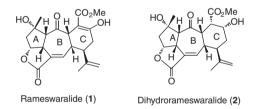


Figure 1. Structure of rameswaralide (1) and its derivative (2).

$$\begin{array}{c} \text{RO} & \text{TMS} \\ \text{O} & \text{H} \\ \text{O} & \text{H} \\ \text{O} & \text{SePh} \\ \text{O} & \text{H} \\ \text{O} & \text{SePh} \\ \text{O} & \text{H} \\$$

Figure 2. Retrosynthetic analysis of tricyclic core 3.

the five-membered γ -lactone in **4** could be derived from the alk-oxycarbonyl radical cyclization of acylselenium **5** onto the exocyclic *cis*-disubstituted olefin with retention of the alkene

a Department of Chemistry, Stanford University, Stanford, CA 94305, USA

^b Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA

DOI of original article: 10.1016/j.tetlet.2010.09.042

^{*} A publishing error resulted in this article appearing in the wrong issue. The article is reprinted here for the reader's convenience and for the continuity of the Special Issue. For citation purposes, please use the original publication details: Trost, B. M.; Nguyen, H. M.; Koradin, C. Tetrahedron Lett. 2010, 51, 6232.

^{*} Corresponding author. Tel.: +1 650 723 3385; fax: +1 650 725 0002. E-mail address: bmtrost@stanford.edu (B.M. Trost).

Scheme 1. Formation of the 5,7-fused bicyclic compound 6.

functionality. ⁴ The 5,7-fused bicyclic skeleton **6** could be formed by ruthenium-catalyzed [5+2] intramolecular cycloaddition of the 1,6-enyne **7** developed in these laboratories. ^{5,6}

Synthesis of the 5,7-fused bicyclic compound **6** commenced with a known β -hydroxy ketone **8** (Scheme 1).^{5c,d} Stereoselective reduction of **8** to the corresponding *syn* 1,3-diol **7** was realized using Et₂BOMe as a chelating reagent and NaBH₄ as a hydride source.⁷ The diol **7** was obtained in 85% yield and with excellent diastereoselectivity (dr = 20:1). The relative stereochemistry of compound **7** was assigned by using Rychnovsky's method for determining the stereochemistry of the 1,3-diol acetonides.⁸ Subjection of 1,6-enyne **7**–5 mol % of CpRu(CH₃CN)₃PF₆ in CH₂Cl₂ for 3 h provided the desired hydroazulene product **6** (Scheme 1) in 73% yield as a single diastereomer. The stereochemistry of compound **6** has been determined by X-ray crystallography.^{5c,d}

With 5,7-bicyclic compound $\bf 6$ in hand, our attention turned to development of the conditions for forming the five-membered α , β -unsaturated lactone found within the tricyclic skeleton $\bf 4$ (Fig. 2). One possible approach to forming the γ -lactone while retaining the alkene functionality involves an atom transfer radical cyclization of acylselenium precursor $\bf 10$ (Scheme 2) onto the disubstituted *cis*-olefin.⁴ Accordingly, chemoselective acylation of diol $\bf 6$ with 1,1'-carbonyl-diimidazole provided acylimidazole $\bf 9$ in 99% yield. Treatment of $\bf 9$ with a reagent combination of PhSeSePh and NaBH $_4$ afforded acylselenium $\bf 10$ in 88% yield (Scheme 2). It is important that an equimolar amount of PhSeSePh and NaBH $_4$ must be used in the reaction to ensure high conversion in forming the desired product $\bf 10$. If an excess amount of NaBH $_4$ was employed in the reaction, an undesired elimination product $\bf 11$ (Scheme 2) was formed as the major product.

Scheme 2. Synthesis of acylselenium 10.

Table 1Atom transfer/reductive radical cyclization

Entry	Conditions	Results
1	Et ₃ B, O ₂ , PhH, rt, 24 h	No reaction
2	Et ₃ B, O ₂ , Yb(OTf) ₃ , PhH	Decomposition
3	Bu₃SnSnBu₃, hv, PhH, 80 °C	No reaction
4	Me ₃ SnSnMe ₃ , hv, PhH, 80 °C	No reaction
5	40 mol % Bu₃SnH, 20 mol % AIBN PhH, 80 °C, 24 h	12 (30% yield)
6	120 mol % Bu₃SnH, 20 mol % AIBN PhH, 80 °C, 12 h	12 (86% yield)

Having successfully synthesized radical precursor **10**, a variety of atom transfer radical cyclization conditions were attempted (Table 1, entries 1–4). Unfortunately, these conditions did not provide the desired tricyclic product **12**, and only resulted in decomposition or recovery of the starting material **10**. On the other hand, when a substoichiometric amount of Bu₃SnH (40 mol %) was employed in the reaction, a reductive radical product **13** was isolated in 30% yield (entry 5). Use of stoichiometric amount of Bu₃SnH (1.2 equiv) and AlBN (0.2 equiv) as the radical initiator provided tricyclic product **13** in 88% yield as a single diastereomer (entry 6).

To prepare the required five-membered α,β -unsaturated lactone, the reported Tsuji method of reacting a silyl enol ether with allyl methyl carbonate was explored. To avoid any difficulties associated with the formation of α,β -unsaturated lactone, the tertiary hydroxyl group within **13** was protected as silyl ether **14** (Scheme 3). Subsequent treatment of **14** with KHMDS at -78 °C, followed by trapping the enolate intermediate with TMSCl, provided silyl enol ether **15**. Reaction of **15** with Pd(OAc)₂ and allyl methyl carbonate in THF at 80 °C for 18 h did not yield the desired α,β -unsaturated lactone **16**.

An unsuccessful attempt at transforming the silyl enol ether **15** into the corresponding γ -lactone **16** prompted us to explore the introduction of the conjugated double bond by a concomitant sulf-enylation–dehydrosulfenylation approach (Scheme 4).¹¹ When PhSSO₂Ph was employed as the electrophilic reagent, sulfide **17** was obtained in 66% yield along with the undesired epimer **18** (Scheme 4). Chemoselective oxidation of the phenyl sulfide functionality in **17** was investigated next. The use of mCBPA (1.1 equiv)

Scheme 3. Attempted formation of α,β -unsaturated lactone.

Download English Version:

https://daneshyari.com/en/article/5267525

Download Persian Version:

https://daneshyari.com/article/5267525

<u>Daneshyari.com</u>