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A B S T R A C T

In this paper, we present a new algorithm for the computation of the focus of expansion in a video sequence.
Although several algorithms have been proposed in the literature for its computation, almost all of them
are based on the optical flow vectors between a pair of consecutive frames, so being very sensitive to noise,
optical flow errors and camera vibrations. Our algorithm is based on the computation of the vanishing point
of point trajectories, thus integrating information for more than two consecutive frames. It can improve
performance in the presence of erroneous correspondences and occlusions in the field of view of the camera.
The algorithm has been tested with virtual sequences generated with Blender, as well as some real
sequences from both, the public KITTI benchmark, and a number of challenging video sequences also
proposed in this paper. For comparison purposes, some algorithms from the literature have also been imple-
mented. The results show that the algorithm has proven to be very robust, outperforming the compared
algorithms, specially in outdoor scenes, where the lack of texture can make optical flow algorithms yield
inaccurate results. Timing evaluation proves that the proposed algorithm can reach up to 15fps, showing its
suitability for real-time applications.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

When a camera moves across a rigid scene, the apparent motion
of the imaged points can be used to infer the relative shift of the
camera with respect to the scene. For the general case, the problem
consists in the computation of the translational and rotational vec-
tors, and is called ego-motion [1]. The computation of ego-motion
plays an important role in some vision systems, such as Visual
Odometry, 3D reconstruction, time-to-impact estimation or obstacle
detection and avoidance.

When the rotational component is null, that is, the camera moves
in a straight line, the problem reduces to the computation of the
translational vector, and the image of this vector on the image plane
is called the Focus of Expansion (FoE) when the camera moves for-
wards, or the Focus of Contraction (FoC) when it moves backwards,
see Fig. 1. Although FoE and FoC refer to opposite directions, their
properties are very similar, and we will only refer to the former,
recalling that the differences in the computation of the later are
minimal.
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For its computation, many algorithms have been proposed. In
the classic approach, the focus of expansion is computed from the
optical flow field between two time-varying frames, which can be
obtained from several algorithms [2]. However, technical challenges
still exist for general scenes. Typical inaccuracies raise in uncon-
strained environments, such as road scenes where a large proportion
of the image appears untextured, for instance, the sky or a tex-
tureless pavement, and optical flow vectors for these areas do not
exist or are erroneous. Another source of error can be caused by
vibrating platforms. Although many vision benchmarks are avail-
able for research, such as the KITTI Benchmark [3] or the CMU Visual
Localization Data Set [4], these sequences are recorded with com-
plex camera setups to prevent such problems. For more basic setups,
however, any instability can cause the FoE computation to decrease
its accuracy.

To face these problems, we propose a new method based on the
estimation of the vanishing point for multi-frame interest point tra-
jectories. The paper is structured as follows: In Section 2, a brief
overview of different FoE estimation approaches is provided. In
Section 3 we introduce our algorithm for the FoE computation based
on the trajectories of interest points. A comparison of our algorithm
with other works is given in Section 4, while Section 5 concludes the
paper.
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2. Related works

Existing techniques to estimate the FoE can be grouped into two
main approaches, namely the continuous methods and the discrete
methods. Algorithms from the continuous group employ dense opti-
cal flow fields, as in [5–7]. In [8], Sazbon et al. recall that, for a
camera moving in a rigid scene, the FoE is characterized by a null
flow vector, with the optical flow field radially diverging from it.
Thus, only the angular component is enough for the estimation of
the FoE, ignoring the magnitude component of the optical flow field.
In their work, it is proposed the use of a specially designed matched
filter which can work with a low-quality estimation of the optical
flow. The matched filter is used to refine the FoE location after a
rough estimation in a first phase. However, the algorithm proposed
in this work requires that the flow estimation strongly covers the
area near the FoE, but this is not generally the case for general video
sequences.

The main disadvantage of continuous methods is that dense opti-
cal flow is computationally expensive. Furthermore, scenes with
lack of texture on a large proportion of the image can yield inaccu-
rate results, since optical flow fields for these areas are likely to be
erroneous. To solve these problems, discrete methods use stronger
correspondences between image features, such as points or lines,
that can be computed from sparse optical flow algorithms.

If several correspondences between points from two consecutive
frames are available, the Fundamental Matrix F can be computed,
and the FoE will correspond with the null-vector of F [9] (p. 245).
Being the basic approach for the FoE estimation, the Fundamental
Matrix is very inaccurate, and has not been widely used. In [10],
the essential matrix is used instead. However, the results show that
the iterative Levenberg–Marquardt algorithm is needed to improve
results from linear algorithms, increasing thus the computational
complexity.

Another approach consists in the computation of the intersection
point of all the lines defined by the optical flow vectors. Since noise
makes all the lines not intersecting at the same point, a minimization
criterion is needed. In [11], Suhr et al. accumulate the lines defined
by the optical flow. After it, the largest peak would correspond with
the required FoE. In [12] Wu et al. compare different minimization
criteria, more specifically, the algebraic method, which is a linear
problem, and the geometric method, which is non-linear and numer-
ically more expensive. It is worth noting here that, for the geometric
method, the Cross Ratio, which is the main tool used in our work, is
also employed there, although in a fundamentally different way. In
their work, it is employed to generate the so called inherent constrains
between a pair of points in two consecutive frames. If the inherit
constrain fails, that is, the Cross Ratio does not hold, the two corre-
sponding pair can not be considered as true correspondences, and are
eliminated from the FoE computation.

In [13], Bak et al. define the C-Velocity over a planar surface
imaged by a camera. When the plane is aligned with the image axis,
the optical flow vectors on the plane can be used to estimate the FoE.
Although simple, this method can only be used when actual planes
are present in the image. For that reason, the use of the algorithm is
limited to urban scenes, where planar facades and the road can be
used as planes to compute the C-Velocity. In [14], Born projects the
optical flow vectors onto the horizontal and vertical axis. These com-
ponents form a line and the point of intersection with the image axis
is the required FoE. A linear regression is needed to compute the line
parameters.

Although discrete methods have been usually preferred over con-
tinuous ones, these methods also show some disadvantages. On the
one hand, finding strong features and correspondences can be a dif-
ficult task, and sometimes it could not be present in the scene.
Furthermore, these methods are normally less robust because they
use local instead of global information.

Fig. 1. Focus of expansion of a translating camera. The center of projection is located
in C0 at t = t0, and moves to C1 at t = t1 with velocity V = (Vx , Vy , Vz)T. A static
point P = (Px , Py , Pz)T is projected to p0 and p1 at t0 and t1 respectively. The focus of
expansion is the image of the vector V.

An alternative way to compute the FoE is by means of algorithms
that compute the 3D camera motion, which are normally referred to
as Visual Odometry (VO) systems. In this case, the goal is the compu-
tation of both the rotational matrix R and the translational vector v,
such that the relation between camera positions at two consecutive
frames is [15]:

T =
(

R v
0T 1

)
. (1)

When the camera motion is a pure translation, R reduces to the
identity matrix, and the image of the vector v is the FoE, as was
shown in Fig. 1. In these systems, for the computation of R and
v, typically the Essential Matrix E is first computed from a set of
correspondences between two consecutive frames. The relationship
between those elements is given by:

E = [t]×R (2)

where [t]× is the matrix representation of the Cross Product with
t. Thus, the computation of the Essential Matrix is a fundamental
step in these kind of systems. Many works have been proposed in
the VO field. In [16], Forster et al. designed a VO system for Micro
Aerial Vehicles (MAVs) using a downward-looking camera. Although
it shows accurate results, it is mainly designed for planar surfaces. In
the work by Geiger et al. [17], R and t is computed by iterative mini-
mization, using the Gauss–Newton algorithm, of the projection error
of the detected points to the image planes. On top of that procedure,
a standard Kalman Filter is used to improve the estimations.

It is worth noting that typically such VO systems are not only
designed for motion estimation, but these systems are also able
to simultaneously perform a 3D reconstruction of the scenario,
a technique called Simultaneous Localization and Mapping (SLAM).
Nonetheless, we are only interested in the motion estimation block.

As we will see in Section 4, some of these algorithms have been
implemented (or downloaded from the paper web page if available),
along with the algorithm proposed in this paper, for comparison pur-
poses. For this task, we have employed both, virtual video sequences
generated with Blender1 and a series of challenging video sequences
recorded with an on-board camera mounted on a vehicle.

1 http://www.blender.org/.
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