ARTICLE IN PRESS

Tetrahedron Letters xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Preparation and reactivity of [2-(3-methyl-4-nitro-isoxazol-5-yl)vinyl]-amines

Ravindra Dere, Claudio Monasterolo, Maria Moccia, Mauro F. A. Adamo*

Centre for Synthesis and Chemical Biology (CSCB), Department of Pharmaceutical and Medicinal Chemistry, The Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Dublin, Ireland

ARTICLE INFO

Article history: Received 30 September 2015 Revised 9 November 2015 Accepted 11 November 2015 Available online xxxx

Keywords: Polyfunctional scaffolds 4-Nitroisoxazoles Isoxazoles Enamines

ABSTRACT

Herein, we report our investigation into the reactivity of 5-enamino-4-nitroisoxazoles. This study revealed that the title compounds, in spite of conjugation to the 4-nitroisoxazole, displayed similar reactivity to enamines, reacting with electrophiles to form new C-C, C-N, and C-Cl bonds. © 2015 Elsevier Ltd. All rights reserved.

 β -Enaminoesters **1** are a class of key intermediates in organic synthesis,¹ employed as starting materials for the preparation of many types of heterocyclic moieties² or as precursors for a variety of biologically active compounds including antibacterial.³ anticonvulsant,⁴ anti-inflammatory,⁵ and antitumor agents (Fig. 1).⁶ Several procedures have been described for their preparation: direct condensation of amines and β -ketoesters followed by Lewis acid catalysis,⁷ addition of amines to alkynes,⁸ addition of ester enolates to nitriles,⁹ addition of ester enolates to tosyl imines,¹⁰ and the Reformatsky reaction of zinc ester enolates with dialkylformamides.¹

It has been shown that 3,5-dimethyl-4-nitroisoxazole **4** reacts with dimethylformamide to give the expected condensation product **2** as a single diastereoisomer (Fig. 2).¹² This procedure has allowed the preparation of compound **2** in high yields using an operatively simple procedure. In addition, being a solid, compound **2** was obtained in pure form by crystallization.

Our group has developed the synthesis of 3-methyl-4-nitro-5styrylisoxazoles **3** and demonstrated this class of compounds to be excellent Michael acceptors, capable of reacting with many soft nucleophiles to provide the corresponding 1,6 addition products in high yields.¹³ Crucial to the observed behavior is the conjugation of the 5-ethenyl electrophile with the 4-nitro group. Compounds **3** were found to react under phase transfer catalysis providing the corresponding nitroadducts,¹⁴ cyclopropanes,¹⁵ and pyrrolidines¹⁶

http://dx.doi.org/10.1016/j.tetlet.2015.11.037 0040-4039/© 2015 Elsevier Ltd. All rights reserved. in high enantiomeric excess. Recently, compounds **3** were employed as a key synthon in the development of a novel process to manufacture γ -aminoacids¹⁷ and in particular the Active Pharmaceutical Ingredient (*S*)-Pregabalin.¹⁸ Following our reports,^{14–18} other groups have used compounds **3** to develop organocatalytic asymmetric procedures confirming, therefore, the high synthetic value of these reagents.¹⁹

etrahedro

Compound **2** bears a structural similarity to enamines **1** which are known to behave as nucleophilic species. However, compound **2** also contains the 4-nitroisoxazole core which is known to render conjugated alkenes highly electrophilic. Therefore, at least in principle, compound **2** could be considered as either an electrophilic or a nucleophilic synthon. In order to establish its chemical nature, we have carried out a study in which compound **2** was reacted with nucleophiles and electrophiles. This study showed that compound **2** behaved exclusively as an activated enamine, in spite of the counter effect exerted by the conjugated nitro group.

At the onset, we screened **2** against common nucleophiles including soft enolizable nitroalkanes, alkylmalonates, indoles, bisulfite, and *S*-nucleophiles. These reactions were carried out under Lewis acid and basic catalysis. In all experiments, unreacted compound **2** was recovered, even after prolonged heating. The reaction of compound **2** with harder nucleophiles such as Grignard reagents, *n*BuLi or copper organometal species furnished a complex reaction mixture. This was explained by considering the electrophilicity of the isoxazole C-5, which likely reacted with the nucleophiles leading to formation of an unstable isoxazoline that underwent uncontrolled fragmentation. Surprisingly, the reaction

^{*} Corresponding author. Tel.: +353 1 4022208; fax: +353 1 4022168. *E-mail address:* madamo@rcsi.ie (M.F.A. Adamo).

R. Dere et al./Tetrahedron Letters xxx (2015) xxx-xxx

Table 1

Figure 1. β -Enaminoesters 1, dimethyl-[2-(3-methyl-4-nitro-isoxazol-5-yl)-vinyl]-amine 2, and 3-methyl-4-nitro-5-styrylisoxazoles 3.

Figure 2. Retrosynthesis of dimethyl-[2-(3-methyl-4-nitro-isoxazol-5-yl)-vinyl]-amine 2.

of **2** with amine nucleophiles occurred easily, generating the corresponding *N*-substituted products in high yields (Table 1). The reactions were conducted by heating **2** in toluene at reflux for 5 h with 5 equiv of the cyclic amine. This procedure furnished the desired enamines **5–14** in 76–99% yields as single (*E*)-isomers (Table 1). The ease of purification of compounds **5–14**, which only involved evaporation of the reaction mixture under reduced pressure, ensured that the desired compounds **5–14** were obtained in high yields.

The reactivity of enamines selected from compounds **5–14** with electrophiles was investigated (Table 2) by the reaction with *N*-electrophiles diethyl azodicarboxylate (DEAD) and diisopropyl azodicarboxylate (DIAD). Delightfully, these reactions progressed to full conversion, providing the desired products in high isolated yields and as a near 1:1 mixture of (*E*) and (*Z*) isomers. It was noteworthy that an increase of the steric hindrance of the cyclic amine lead to a small change in the *E*/*Z* ratio from 1:1 to 4:6, presumably favouring the (*Z*) isomer (Table 2, entries 5, 7, and 8).

Table 2

Reaction of selected enamines with DEAD or DIAD

OH

14

86

Synthesis of 1-[2-(3-methyl-4-nitro-isoxazol-5-yl)-vinyl]-amines 5-14

н

5 equiv

toluene

NO/

NO₂

10

Entry	H-N	R	Product	Yield (%)	(E/Z) ratio
1	-NEt ₂	–Et	15	75	1:1
2		–Et	16	88	1:1
3	N N	–Et	17	89	1:1
4	N O	–Et	18	84	1:1
5		–Et	19	84	4:6
6	-NEt ₂	-iPr	20	92	1:1
7	N N	- <i>i</i> Pr	21	89	4:6
8	N N	- <i>i</i> Pr	22	79	4:6

Download English Version:

https://daneshyari.com/en/article/5267678

Download Persian Version:

https://daneshyari.com/article/5267678

Daneshyari.com