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Low-rank matrix approximation is used in many applications of computer vision, and is frequently
implemented by singular value decomposition under L2-norm sense. To resist outliers and handle matrix
with missing entries, a few methods have been proposed for low-rank matrix approximation in L1 norm.
However, the methods suffer from computational efficiency or optimization capability. Thus, in this paper
we propose a solution using dynamic system to perform low-rank approximation under L1-norm sense.
From the state vector of the system, two low-rank matrices are distilled, and the product of the two
low-rank matrices approximates to the given measurement matrix with missing entries, in L1 norm. With
the evolution of the system, the approximation accuracy improves step by step. The system involves a param-
eter, whose influences on the computational time and the final optimized two low-rank matrices are theoret-
ically studied and experimentally valuated. The efficiency and approximation accuracy of the proposed
algorithm are demonstrated by a large number of numerical tests on synthetic data and by two real datasets.
Compared with state-of-the-art algorithms, the newly proposed one is competitive.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many applications in the field of computer vision, as well as several
others in pattern recognition [1] and bioinformatics, require finding an
appropriate low-rank matrix that approximates the measurement ma-
trix [2]. This requirement becomes especially challengingwhen themea-
surement matrix has noisy elements or missing entries. For example,
while recovering shape and motion from image streams, some tracked
feature points may be occluded in some frames and the measurement
noise is also unavoidable [3]. For themeasurementmatrix withoutmiss-
ing entries, low-rank matrix approximation in L2 norm can be solved by
singular value decomposition. However, this method is not practical to
themeasurement matrix with missing entries. To perform low-rank ap-
proximations for the matrices with missing entries, a lot of techniques
were proposed by many researchers, such as Morita and Kanade [4],
Hartley and Schaffalitzky [5], Wang and Wu [6], Buchanan and
Fitzgibbon [7,8], Ye [9], Liu et al. [10], Cai et al. [11], and Chen [12].
These techniques include the sequential factorizationmethod, the singu-
lar value thresholding algorithm and the power factorization method,
etc. It was first introduced by T. Okatani etc. [13] to solve the problem

using the Wiberg algorithm, and it was shown that on many problems,
the method (L2-Wiberg for short) outperforms many other methods.

In real applications of low-rankmatrix approximations, L2-norm ap-
proximation is justified onlywhen noise is negligible [14], otherwise the
obtained low-rank approximating matrix gives no guarantee of statisti-
cal optimality, and may be highly biased as well [3,4]. On the contrary,
L1-norm approximation is much more robust to handle outliers than
L2-norm approximation, as reported in [15]. Thus, the low-rank approx-
imation ofmatrices in L1 normhas been attractingmore andmore atten-
tion in recent years [16,15,17]. Wright et al. [16] introduced the robust
principal component analysis (where L1 norm is used to recover
corrupted low-rank matrices), and the same idea was also used for
Robust Video Restoration [18]. Ke and Kanade [15] presented an
alternative convex programming method to solve the L1-norm minimi-
zation problem,which is formulated from low-rankmatrix factorization.
Eriksson and Hengel [17] experimentally revealed that the alternated
convex programming approach frequently converges to a point that is
not a local minimum (typically, the evolution of the L1-norm cost func-
tion stops after a small number of iterations), and thus they introduce
the state-of-the-art L1-Wiberg approach.

In mathematics, a dynamic system consists of a state vector and an
evolution rule, which describes how a future state vector will be
obtained from the current one. Dynamic systems have been used
in computer vision field for a long time [19], and have also been ap-
plied successfully to solve eigen-problems of matrices [20,21]. The
L1-norm cost function is not smooth all the time and non-convex,
which causes many traditional optimization techniques suitable for
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L2-norm cost function not applicable. In this paper, in order to per-
form low-rank matrix approximation in L1 norm, we intend to design
a dynamic system to tackle the following problem:

min
R;S

∥W⊙ Y−RSð Þ∥1: ð1Þ

Compared to the known techniques specially designed for low-rank
matrix approximation in L1 norm [15,17], we will demonstrate that
the proposed dynamic system provides competitive capability on
optimizing Eq. (1) with a lot of experimental results.

The rest of this paper is organized as follows. In Section 2, the dy-
namic system is built, and the analysis of its properties is given, which
reveals that the dynamic system is able to get the optimal low-rank
matrix approximation. Subsequently, in Section 3, we demonstrate
the performance of the computational model using experimental
results. Finally, concluding remarks are drawn in Section 4.

2. The computation model

Let Hij denote an (m+n)r×(m+n)r matrix with its sub-matrix
from rows ir+1 to (i+1)r and from columns mr+jr+1 to
mr+(j+1)r being an identity matrix. The function vec (A) denotes
the vectorization of anm×nmatrix A, i.e., vec (A) is themn×1 column
vector obtained by stacking the columns of the matrix A on top of one
another. For the convenience of presentation, we equivalently
reformulate Eq. (1) as follows:

minxV xð Þ;V xð Þ≜∑m
i¼1∑n

j¼1 f ij xð Þ
��� ���;

f ij xð Þ≜wij yij−xTHijx
� �

;

x≜ vecT RT
� �

vecT Sð Þ
h iT

:

ð2Þ

In practice, the term xTHijx in Eq. (2) corresponds to the (i,j) entry
of the product matrix RS in Eq. (1). In Eq. (2), it can be seen that the
cost function V(x) is not convex and not always smooth with respect
to f ij xð Þ. Thus, the techniques based on gradient [22] are not directly
applicable. It is also impossible to transform Eq. (2) into a standard
linear or quadratic mathematical programming problem, and thus
the methods applicable to mathematical programming problems are
still not suitable for solving Eq. (2).

Motivated by the difficulty of using conventional methods to solve
Eq. (2), we intend to solve the problem by designing a dynamic sys-
tem, which is proposed as:

f _x tð Þ ¼ ∑m
i¼1∑

n
j¼1

2
π
arctan σ f ij x tð Þð Þ

� �
gij x tð Þð Þ;

gij x tð Þð Þ≜wij Hij þHT
ij

� �
x tð Þ

� �
; t > 0;

x tð Þ ¼ x0; t ¼ 0

ð3Þ

where the parameter σ>0. With the evolution of Eq. (3), the state
vector x(t) varies with time, and so does V(x(t)) . Is the evolution of
Eq. (3) able to decrease V(x(t)) towards its global or local minimum?
And how does the parameter σ affects the convergence of Eq. (3)? In
order to answer these questions, two propositions are given. The first
one is formulated as follows, and it was proven in Appendix A.

Proposition 1. When σ approaches infinity, if the initial vector, x(t0),
satisfies D+V(x(t0))≠0, the objective function V(x(t)) will be locally
minimized by the evolution of the dynamic system in Eq. (3); if x(t0)
exactly satisfies D+V(x(t0))=0, V(x(t)) will keep the same value as
V(x(t0)), whether V(x(t0)) is a local maximal or minimal extremum.

The condition that σ approaches infinity makes sure the conver-
gence of V x tð Þð Þ to its local minimum in terms of Proposition 1.

However, it may lead to low computational efficiency for Eq. (3). It
is impossible to derive the analytic solution of Eq. (3), and thus it is
a common way to use numerical computation to solve Eq. (3). In
numerical computation, the time step size, δt, can either be fixed or
varied. Compared to the fixed-step strategy, the varied-step one is
time-saving because for a given level of accuracy, it can reduce the
number of steps when adjusting the time step size dynamically at ne-
cessity. Thus, varied-step strategy is usually preferred, and the time
step size varies dynamically in terms of the local error. In numerically
solving Eq. (3) with a variable step size, the time step size δt is usually
related to the Jacobin matrix of the right hand side of Eq. (3) at time t.
And a smaller value is chosen for δt if greater changes have taken

place in the right hand side. Due to
∂ arctan σ f ij x tð Þð Þð Þ

∂f ij x tð Þð Þ ¼ σ
σ f ij x tð Þð Þð Þ2þ1

, the

condition that σ goes to infinity makes
∂ arctan σ f ij x tð Þð Þð Þ

∂f ij x tð Þð Þ positive infinite

when f ij x tð Þð Þ is close to zero, and leads to great changes in the right
hand side of Eq. (3) in a large probability. Thus the condition that σ
approaches infinity will reduce the time step size δt, and will increase
the iteration number seriously. It further allows the computation time
of Eq. (3) to increase dramatically when f ij x tð Þð Þ is close to zero.

In real applications, such as recovering shape andmotion from image
streams [4] and robust alignment [23], the size of themeasurementma-
trix Y is usually large, which allows the dimension of x to behigh. For ex-
ample, in theOxford dinosaur data set [13],Y is a 72×319matrix as used
in [17], and it makes the dimension of x be (m+n)r=1564. The low ef-
ficiency due to the condition thatσ approaches infinity can leave Eq. (3)
unsuitable for these large-scale problems. In order to ameliorate the cal-
culation efficiency of Eq. (3), σ cannot be infinite. Can the dynamic sys-
temof Eq. (3)with a finiteσ still have the capability to optimizeV xð Þ? In
order to solve this question,we give the following proposition, the proof
of which will be provided in Appendix B.

Proposition 2. With any σ>0, V x tð Þð Þ cannot keep on increasing.
Moreover, if σ is finite, but large enough, the local minimal value of
V x tð Þð Þ can be extracted by the evolution of Eq. (3) if DþV x t0ð Þð Þ≠0;
and Eq. (3) cannot change V x tð Þð Þ if DþV x t0ð Þð Þ ¼ 0 whether
V x t0ð Þð Þ is a locally maximal or minimal extremum of V xð Þ.

Proposition 2 implies that V x tð Þð Þ is bounded, and so is f ij x tð Þð Þ. In
the bounded domain of f ij x tð Þð Þ, a larger σ f ij x tð Þð Þ�� �� makes 2

π arctan

σ f ij x tð Þð Þ
� �

closer to sgn f ij x tð Þð Þ
� �

. Thus any aspect affecting the values

of σ f ij x tð Þð Þ�� �� will influence the evolution of V x tð Þð Þ. A larger σ can en-
hance the decreasing speed of V x tð Þð Þ, as indicated by Propositions 1
and 2. On the other hand, f ij x tð Þð Þ�� �� is frequently larger for the measure-
mentmatrix Ywith a larger dimension. Thus, if Y has a larger dimension,
V x tð Þð Þ usually has a better convergence speed under the same σ. Prop-
osition 2 implies that, a finite σ may be appropriate for optimizing
V x tð Þð Þ for a givenmeasurementmatrixY, and it is unnecessary to assign
a very large value to σ, which possibly leads to a heavy computational
load. Actually for any σ>0, the probability, in which V x tð Þð Þ increases
at time t under the evolution of Eq. (3), is very low, and this will be con-
firmed by the experimental results in the following Section. Combining
Propositions 1 and 2, it tells that Eq. (3) with a larger σ is more suitable
for optimizing V xð Þ. However, this may consume more computation
time. Thus the practical value of σ is dependent on the tradeoff between
the convergence speed (ofV x tð Þð Þwith respect to time (t) and the actual
computation time.

3. Experimental results

In this section, experimental results are presented to evaluate the
performance of the proposed approach in Eq. (3). There are two pur-
poses of the experiments. The first is to experimentally valuate the in-
fluence of the parameter σ on both computation time and convergence
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