FISEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Photo-induced formation of cyclopropanols from α -ketoamides via γ -C—H bond activation

Eisuke Ota ^{a,b}, Yu Mikame ^{a,c}, Go Hirai ^{a,d,e,*}, Hiroyuki Koshino ^d, Shigeru Nishiyama ^b, Mikiko Sodeoka ^{a,d,e,*}

- ^a RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ^b Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- ^c Department of Life Science and Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
- ^d RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- ^e AMED-CREST, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

ARTICLE INFO

Article history: Received 31 August 2015 Revised 8 September 2015 Accepted 13 September 2015 Available online 15 September 2015

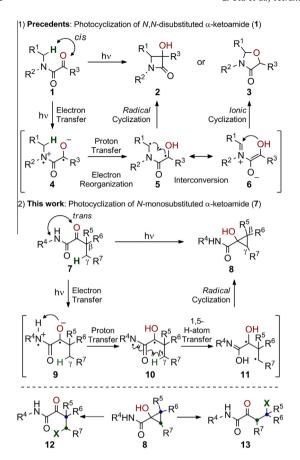
Keywords: Photo chemical reaction Cyclopropanols Kinetic isotope effect α-Ketoamides Ring-opening reactions

ABSTRACT

A novel type of photocyclization of α -ketoamides was developed, affording unique cyclopropanols bearing amide functionality. *N*-tert-Butyl, *N*-trityl, or *N*-non-substituted α -ketoamides with a bulky substituent at the β -position of the amide functionality were efficiently converted to corresponding cyclopropanols through the activation of the γ -C—H bond followed by C—C bond formation between the α - and γ -positions of the amide. Hydrogen abstraction from the γ -position of the amide was considered to be the rate-determining step of cyclopropanol formation, based on the kinetic isotope effect. Cyclopropanols could be converted to two different types of functionalized α -ketoamides depending on the method of ring-opening.

© 2015 Elsevier Ltd. All rights reserved.

The photochemistry of α -dicarbonyls has been extensively investigated. In particular, the photoreaction of α -ketoamides 1 to produce β -lactam derivatives 2 and/or oxazolidinone derivatives 3 as the main products (so-called Norrish type-II reaction) is well-known (Scheme 1-1)² in organic synthesis, because it enables direct C—C (Norrish-Yang cyclization to form 2) or C—O bond formation (to form 3) through selective cleavage of the C—H bond³ at the α -position of the N-atom (N α -proton). Moreover, the α -dicarbonyl system is conveniently activated by irradiation at relatively long wavelength compared to other standard functional groups in organic molecules. Various applications to the synthesis of biologically active molecules⁴ or asymmetric reactions in chiral crystals⁵ have also been reported.


Based on the intensive experiments by Aoyama's group⁷ and Whitten's group,⁸ the mechanism of formation of **2** and **3** was proposed to be as follows (Scheme 1-1). Irradiation of **1** induces $n-\pi^*$ transition and generates the singlet excited state. The amide functionality serves to quench the excitation state via an electron transfer process to generate the transient zwitterion species **4**. Since the acidity of the N α -proton would be increased, abstraction of the H-atom followed by protonation of the carbonyl O-atom

affords 1,4-biradical species $\bf 5$ after electron reorganization. According to Whitten's report, β -lactam derivatives $\bf 2$ are constructed via the intramolecular radical coupling reaction. In contrast, electron transfer can occur again to form another zwitterion species $\bf 6$ as a precursor of the oxazolidinone derivatives $\bf 3$.

In many cases, N,N-disubstituted α -ketoamides **1** are expected to afford better results as substrates, since the keto-functionality and α-position of the N-atom are placed close to each other. Several examples of photolysis of N-monosubstituted α -ketoamides have been reported.9 On the other hand, photo-induced cyclopropanol formation of ketones¹⁰ has been reported only for a limited range of substrates, such as β -amino-, ¹¹ β -oxy-, ¹³ or α -methylene-ketones, ¹² in which the 1,4-hydrogen shift would be facilitated due to stabilization of the radical at the β-position by a heteroatom or double bond. However, as far as we know, no example of photo-induced cyclopropanol formation of α-ketoamides has been reported. We hypothesized that the formation of cyclopropanol 8 would be possible for N-monosubstituted α -ketoamides 7, which favor s-trans conformation (Scheme 1-2). In contrast to the simple ketone, α -ketoamides 7 are expected to be activated by irradiation at a longer wavelength (longer than 300 nm) and to generate the transient zwitterion species 9. We speculated that the amide functionality in 9 would facilitate abstraction of the unactivated γ -C-H bond to generate

^{*} Corresponding authors. Fax: +81 48 462 4666.

E-mail addresses: gohirai@riken.jp (G. Hirai), sodeoka@riken.jp (M. Sodeoka).

Scheme 1. (1) Photo-reaction of α -ketoamides; (2) working hypothesis for the formation of cyclopropanol derivatives.

1,3-biradical species **11**, which is then converted to the cyclopropanol product. Namely, the rapid proton transfer from the N-atom to the oxygen atom (from **9** to **10**, instead of transfer of the N α -proton in the case of **1**) and the 1,5-hydrogen shift from the γ -position to the amide owing to its radical character (from **10** to **11**) result in γ -C—H bond activation. ¹⁴ The highly substituted cyclopropanol **8** bearing amide functionality is expected to be a unique synthetic building block for organic synthesis. Since various types of ring-opening reactions of cyclopropanol ¹⁵ are known, **8** could be converted to the γ -position-functionalized amides **12** or **13**. The overall transformation is regarded as functionalization of the γ -position, with or without rearrangement of the framework.

To test our working hypothesis, 3,3-dimethyl-2-oxobutyramides 14 having a substituent on the N-atom were selected as substrates for initial examination. Normally, functionalization of the C—H bond on the *t*-butyl group is challenging without a special directing group,¹⁶ but we expected that 3 equivalent methyl groups at the γ -position would facilitate the desired reaction (Table 1). All reactions were conducted in glass tubes under a blue LED lamp (max. output 365 nm) under degassed conditions (see Fig. S1).¹⁷ Preparation of α -ketoamides **14** is summarized in Schemes S1 and S2. 17 As we expected, photolysis of benzyl amide 14a gave the isolable cyclopropanol 15a, though in low yields (entry 1). Neither β -lactam **2** nor oxazolidinone **3** was detected. Instead, imide 14b or its cyclized product 15b was isolated. This observation suggested that H-atom abstraction from the $N\alpha$ -proton competes with the desired reaction pathway. Hence, imide-type **14b** (phenyl) and **14c** (n-pentyl) without N α -protons were investigated as substrates. As a result, cyclopropanol formation was slightly improved, but degradation of the substrates

Table 1 Effect of substituent on N-atom

Enter	Substrate	R	Time (h)	Products yield (%)
Entry	Substrate	N.	Time (h)	Product: yield (%)
1	14a	CH ₂ Ph	1.5	15a : 13 ^a
2	14b	COPh	11	15b : 28
3	14c	$CO(CH_2)_4CH_3$	1	15c : 31
4	14d	O ^t Bu	12	15d : 0 ^b
5	14e	^t Bu	3	15e : 71
6	14f	CPh₃	12	15f : 50 ^c
7 ^d	14f	CPh ₃	11	15f : 99
8	14g	Н	5 min	15g : 94

- ^a **14b** (31%) and **15b** (24%) were obtained.
- ^b Starting material was recovered (98%).
- ^c Starting material was recovered (49%).
- d Reaction solvent: 2-BuOH.

was still predominant (entries 2 and 3). Although no photoreaction of t-butyl hydroxamate **14d** occurred at all, to our delight, we found that the irradiation of t-butyl amide **14e** afforded the corresponding cyclopropanol **15e** in 71% yield (entries 4 and 5). In addition, the photo-reaction of the trityl-protected amide **14f** proceeded cleanly (entry 6), though with only moderate conversion. Since transient formation of the hemiacetal with methanol may disturb the reaction, ¹⁸ solvent screening was performed (see Table S1). ¹⁷ We found that the use of 2-butanol was effective, providing **14f** in almost quantitative yields (entry 7). Furthermore, it was found that the photo-reaction of the simple (N-non-substituted) 3,3-dimethyl-2-oxobutyramide (**14g**) was completed within 5 min, and 1-hydroxy-2,2-dimethylcyclopropanecarboxamide (**15g**) was obtained in 94% yield (entry 8).

With this knowledge of the effects of N-atom substituents and solvent in hand, we next investigated variations of the ketone. For easy monitoring of the proto-reaction by TLC, UV-active trityl-protected amides 16 were selected (Scheme 2). Preparation of 16 is shown in Schemes S3-S5.¹⁷ Photo-reaction of 16a-16c bearing a substituent Y (Me, OBn, or OTBS) proceeded smoothly to provide the corresponding cyclopropanols syn-17a-17c and their diastereomers anti-17a-17c in excellent yields. The stereochemistry of these products was mainly determined from their HMBC spectra. Namely, a stronger HMBC correlation from Ha to the C-atom of the amide carbonyl group was observed in the major isomers. We considered that this would be attributed to the syn-orientation (dihedral angle = \sim 0°) of these atoms, which should show a larger coupling constant (I value) than the corresponding *anti*-isomers (dihedral angle = \sim 135°). This consideration was supported by DFT calculations as well as by the different intensities of the HMBC correlations observed between Ha and the two methyl groups on cyclopropanols (Figs. S2-S6).¹

It should be noted that no cyclized product at the methyl group **18a–18c** was detected in the photochemical reaction of **16a–16c**. In contrast, the reaction of **16d** with an acetoxy group provided regio-isomer **18d** as a major product (80%) along with a small amount of *syn-***17d** (4%). The stereochemistry of these molecules was assigned in the same manner as described above (see also Figs. S7–S8).¹⁷ These results indicated that the selective formation of cyclopropanols **17** and **18** can be achieved by the choice of a suitable substituent on the O-atom. On the other hand, photolysis of non-protected **16e** did not produce any cyclopropanol derivative. Instead, disproportionation occurred to give **19** in moderate yields.¹⁹ In addition, **16f** with a bromine atom was converted to

Download English Version:

https://daneshyari.com/en/article/5267846

Download Persian Version:

https://daneshyari.com/article/5267846

<u>Daneshyari.com</u>