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a b s t r a c t

A new efficient access to b-substituted cyclobutanones via Michael addition using cyclobuteniminium
salts is described. Competition reactions have been performed in order to demonstrate the higher reactiv-
ity of cyclobuteniminium salts compared to their cyclobutenone analogs and the results have been
rationalized by DFT calculation. Michael adducts have also been efficiently functionalized demonstrating
the utility of such building blocks in organic synthesis.

� 2015 Elsevier Ltd. All rights reserved.

Cyclobutanone derivatives are remarkably versatile building
blocks in organic synthesis.1 Amongst the different methods
reported for their synthesis,1,2 [2+2] cycloaddition reactions
between an olefin and a ketene1,3 or a keteniminium salt1,4 2 have
been the most widely used (Scheme 1). The keteniminium chem-
istry is however more attractive since 2 does not undergo side-
reactions such as dimerization/oligomerization and can be easily
prepared in situ from tertiary amide 1 using Ghosez’s procedure
(Scheme 1).5 However, a drawback of this methodology compared
to the one based on ketene is that it does not apply to vinyl ethers
and enamines, probably due to the stepwise mechanism of the
cycloaddition and the important stabilization of the cationic inter-
mediate by the heteroatom (A, Scheme 1).6 We recently reported
an efficient access to cyclobutanone derivatives 6 via a one-pot
[2+2]/[4+2] sequence (Scheme 2).7 Next, we aimed to further
elaborate cyclobuteniminium salts 5 by Michael addition
(Scheme 2). Indeed, the one-pot [2+2]/(hetero)-Michael reaction
sequence would be an attractive alternative to the cycloaddition
with ketenes1b or keteniminium salts (Scheme 1) since it would
avoid the sometimes delicate and/or hazardous synthesis of vinyl
precursors 3. Herein, we disclose the first general access to b-
substituted cyclobutanone derivatives via Michael addition of O-,
N-, S-, Se-, and C-nucleophiles to in situ prepared
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Scheme 1. Access to keteniminium salts 2 from amide 1 followed by [2+2] with
alkene derivatives 3.
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Scheme 2. Diels-Alder and Michael reactions with cyclobuteniminium salts 5.
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cyclobuteniminium salts.8 We started our investigation using
alcohols9 as nucleophiles and to our delight the addition of primary
and secondary alcohols to cyclobuteniminium 5a–e10,11 proceeded
at room temperature in 30 min affording b-alkoxycyclobutanone
8a–f in good overall yields after hydrolysis (43–71%, 4 steps,
Scheme 3).12 Good to high diastereoselectivities (80:20 and
90:10) in favor of trans-cyclobutanones 8e and 8f were observed
when using mono-substituted cyclobuteniminium salt 5d/e as
Michael acceptors. Tertiary alcohol functionality (tert-butanol,
8g) was compatible with the methodology although the increased
steric hindrance required a higher reaction temperature (60 �C).
Phenol derivatives (8h/i), carboxylic acids (8j/k), hydroxamic acids
(8l/m) and oxime (8n) were also suitable oxo-nucleophiles afford-
ing functionalized cyclobutanones 8j/n in good yields (56–73%,
Scheme 3).

Surprisingly, when attempts were made to use primary and sec-
ondary amines such as aniline and pyrrolidine as nucleophiles, no
traces of cyclobutanones 10a/b were detected (Scheme 4).13 NMR
monitoring of the reaction showed that complete decomposition
of intermediate iminium 9a/b occurred before the hydrolysis step.
Based on the work of Matsuo14 these results can be explained by a
fast ring-cleavage of 9 leading to highly reactive cationic inter-
mediates B as depicted in Scheme 5. Since no degradation was
detected with oxo-nucleophiles, this ring-opening reaction would
be more favored with 9 than with 7 owing to the better stabiliza-
tion of the iminium B (Scheme 5).

This was further validated by DFT calculations, where the ring
opening depicted in Scheme 5 was modeled for 7a and 9a. Free
energies of activation and reaction are consistent with the experi-
mental observations, indicating both an ease of ring opening for 9a
as well as a thermodynamically more stabilized ring-opened form

(Fig. 1). In 9a-open form, bond distances for the positively charged
nitrogen illustrate a partial double bond character on both sides of
the iminium ion, indicating stabilization thorough electron
delocalization from the aromatic ring.

Hypothetically, less donating nitrogen should minimize such
side reaction. This hypothesis was confirmed by the addition of
anilines bearing strong electron-withdrawing groups (p-CF3 and
p-NO2) which afforded cyclobutanones 10c/d in good yields (63/
71%, Scheme 4) without any traces of decomposition. The same
results were obtained with electron-poor pyrimidines (10e/f, 61/
58%) and the hydrazone derivative (10g, 48%). We were also
pleased to find that the aza-Michael reaction worked also very well
and regioselectively with a broad range of heterocycles such as
pyrazole (10h/i), triazole (10j,k), tetrazole (10l/m), benzimidazole
(10n/o), adenine (10p) and purine (10q/r) derivatives.12 However,
only degradation was observed with imidazole (10s), probably due
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Scheme 4. Aza-Michael reaction with cyclobuteniminium 5.11 aReaction condi-
tions: 5 (10 ml, 0.12 M in CH(D)Cl3), R5NHR6 (4.8 mmol), 5 min, room temperature.
b5a was used as Michael acceptor. cd.r. determined by integration of the signals in
the crude 1H NMR. d5b was used as Michael acceptor.
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