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Bipartite graphmatchinghas been demonstrated to be one of themost efficient algorithms to solve error-tolerant
graph matching. This algorithm is based on defining a cost matrix between the whole nodes of both graphs and
solving the nodes' correspondence through a linear assignment method (for instance, Hungarian or Jonker–
Volgenant methods). Recently, two versions of this algorithm have been published called Fast Bipartite and
Square Fast Bipartite. They compute the same distance value than Bipartite but with a reduced runtime if some
restrictions on the edit costs are considered. In this paper, we do not present a new algorithm but we compare
the three versions of Bipartite algorithm and show how the violation of the theoretically imposed restrictions
in Fast Bipartite and Square Fast Bipartite do not affect the algorithm's performance. That is, in practice, we
show that these restrictions do not affect the optimality of the algorithm and so, the three algorithms obtain sim-
ilar distances and recognition ratios in classification applications although the restrictions do not hold. Moreover,
we conclude that the Square Fast Bipartite with the Jonker–Volgenant solver is the fastest algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Attributed graphs have been used in some pattern recognition fields
such as object recognition [1–3] scene view alignment [4–6] multiple ob-
ject alignment [7,8], object characterization [9,10] interactive methods
[11,12] image registration [13], tracking [14] among a great amount of
other applications. Interesting reviews of techniques and applications
are [15,16] and [17]. Error-tolerant graph-matching algorithms compute
the correspondences between nodes of two Attributed Graphs that mini-
mises some kind of objective function. One of the most widely used
methods to evaluate an Error-correcting graph isomorphism is the
Graph Edit Distance [18–21]. The basic idea behind the Graph Edit Dis-
tance is to define a dissimilarity measure between two graphs based on
the minimum amount of required distortion to transform one graph
into the other. To this end, a number of distortion or edit operations,
consisting of insertion, deletion and substitution of both nodes and
edges are defined. Then, for every pair of graphs (Gp andGq), there is a se-
quence of edit operations that transforms one graph into the other. To
quantitatively evaluate which sequence is the best, edit cost functions
are introduced. The basic idea is to assign a penalty cost to each edit oper-
ation according to the amount of distortion introduced in the transforma-
tion. Unfortunately, the time and space complexity to compute the
minimumof these objective functions is very high. For this reason, almost

20 years ago appeared the Graduated Assignment algorithm [22] that
computes a sub-optimal solution of the Error-Tolerant Graph Matching
problem in O(n6), being n the number of nodes of both graphs.

Other methods different from graph edit distance have been pre-
sented in which the flexibility to cope with any kind of domains in
node and edges and different structures is reduced but also their com-
putational cost. One example are the spectral methods [23,24], which
are based on the eigendecomposition of the adjacency or Laplacian ma-
trix of a graph. In this framework, graphs are unlabelled or only allow
severely constrained label alphabets. Other common constraints include
restrictions to ordered graphs [25], planar graphs [26,27], bounded-
valence graphs [28], trees [29] and graphs with unique node labels
[30]. Finally, a general optimisation framework based on a graduated
non-convexity and concavity procedure (GNCCP) [31] has been applied
to solve the error-tolerant graph matching. They present a comparison
to well-know methods like [22] showing good achievements.

The Graph Edit Distance is applicable to a wide range of real-world
applications since any type of attributes can be used. In recent years, a
number of methods addressing the high computational complexity of
graph edit distance computation have been proposed. Probabilistic re-
laxation labelling [32,33] adopts a Bayesian perspective on Graph Edit
Distance and iteratively applies edit operations to improve a maximum
aposteriori criterion. As an alternative to this hill climbing approach, ge-
netic algorithms have been proposed for optimization in [34]. In [35] a
randomized construction of initial mappings is followed by a local
search procedure. In [36], a linear programming method for computing
the edit distance of graphs with unlabelled edges is reported. And also,
dominant sets have been applied to sub-optimally compute the edit
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distance [37]. Finally, in [38] the graph edit distance is approximated by
the Hausdorff distance.

Recently, a new algorithm called Bipartite (BP) [39] and two other
versions of this algorithm have appeared that are called Fast Bipartite
[41] (FBP) and Square Fast Bipartite [42] (SFBP). Note, this algorithm
solves the error-tolerant graph-matching problem between attributed
and undirected graphs. Therefore, it has not any relation between
matching graphs that are classified as bipartite. These three algorithms
have a cubic computational cost with respect to the number of nodes
and are implemented in two main steps. In the first one, a cost matrix
is defined and in a second one, a linear solver on this matrix is applied
to find the final distance and node correspondence. Due to BP, FBP or
SFBP donot consider the structural information globally but only locally,
the obtained distance tends to be larger than the exact one. Some
methods [43,44] improve this distance and obtain a new correspon-
dence starting from the correspondence computed by BP, FBP or SFBP
at the expense of increasing the runtime.

Table 1 summarises the main properties and differences of these al-
gorithms extracted from [41] and [42]. Two linear solvers have been
used; the Hungarian method [45,46] and the Jonker–Volgenant solver
[48], which was published later. It is not guaranteed that both methods
obtain exactly the same correspondence, although there is a clear ten-
dencyof obtaining similar assignations. Therefore, thedistance obtained
by the three algorithms through the Hungarianmethod can be different
of the distance obtained by the same algorithms but through the
Jonker–Volgenant solver. The Hungarian method is usually slower
than the Jonker–Volgenant solver but always converges. The Jonker–
Volgenant is faster but it has convergence problems in some cost matri-
ces. In this way, the Hungarianmethod always converges while applied
to the cost matrices defined by BP and FBP algorithms but the Jonker–
Volgenant method not always finishes on the cost matrix defined by
FBP. The Computational Cost of FBP and SFBP is slightly lower than BP
but in the expense of introducing some restrictions on the edit costs
[41,42]. In Table 1, n and m represent the order of both graphs. Finally,
it was shown in [41] that the real runtime of these solvers clearly
depends on the cost matrix and so, the runtime of comparing two
graphs depends on the order of presentation of these graphs. We call
this property a non-symmetric runtime. In this way, it is worth to
consider the number of nodes of the graphs to decide in which order
the graphs are introduced into the matching algorithm.

In some classification applications or tests on databases, it would be
useful to set some edit costs such that the edit costs restrictions theoret-
ically imposed to FBP and SFBP do not hold with the aim of increasing
the recognition ratio. The aim of this paper is to present a real compar-
ison of the three methods and to show to which extend the fact of not
holding the edit cost restrictions affects on the runtime, optimality
and recognition ratio. That is, we want to show the applicability of
these algorithms on real graph problems not only from the runtime
point of view but also from the recognition ratio point of view. To do
so, we performed two types of experiments. The first ones are applied
on synthetic graphs and we want to discover which is the increase of
the obtained graph edit distance when we move away from the edit
cost restrictions. The second ones are applied to public graph databases
and we want to show the relation between edit costs (although they
may violate the restrictions), recognition ratio and run time.

The outline of the paper is as follows: in the next section, we define
theAttributed graphs and theGraphEdit Distance. In Section 3,we com-
ment the two most well known linear assignment solvers. In Section 4,
we summarise algorithms BP, FBP and SFBP and also the Hungarian and
Jonker–Volgenant linear solvers. In Section 5, we move on the experi-
mental part to present a comparison of the applicability of these three
algorithms. Section 6 concludes the paper.

2. Attributed graphs and Graph Edit Distance

In this section, we first define Attributed graphs and Error-tolerant
graph matching and then we explain the Graph Edit Distance.

2.1. Attributed graphs

AnAttributedGraph is defined as a triplet G= (Σν,Σe, γv, γe), where
Σv= {va | a=1,…, n} is the set of vertices andΣe= {eab|a, b∈ 1,…, n} is
the set of edges. Functions γv : Σv→ Δv and γe : Σe→ Δe assign attribute
values in any domain to vertices and edges. The order of graph G is n.
We call E(va) to the number of neighbours of node va, that is, the num-
ber of outgoing edges. Finally, we define the neighbours of a node va,

named Na, on an attributed graph G, as another graph Na ¼ ðΣNa
v ; ΣNa

e ;

γNa
v ;γNa

e Þ . The definition of the neighbours of a node is needed to
define two different local sub-structures in Section 4. Na has the struc-
ture of an attributed graph but it is only composed of nodes connected

to va by an edge. Formally, ΣNa
v ¼ fvbjeab∈Σe g, ΣNa

e ¼ ∅ (empty set)

and γNa
v ðvbÞ ¼ γvðvbÞ, ∀vb∈Σ

Na
v .

2.2. Error-correcting graph isomorphism

Let Gp = (Σv
p, Σe

p, γv
p, γe

p) and Gq = (Σv
q, Σe

q, γv
q, γe

q) be two Attributed
graphs of initial order n and m. To allow maximum flexibility in the
matching process, graphs are extended with null nodes to be of order

n+m.We refer to null nodes of Gp andGq by Σ̂
p
v ⊆ Σ

p
v and Σ̂

q
v ⊆ Σ

q
v respec-

tively. We assume that null nodes have indices a ∈ [n + 1, …, n + m}
and i ∈ [m + 1, …, n + m} for graphs Gp and Gq, respectively. Let T be
a set of all possible bijections between two vertex setsΣv

p andΣv
q.We de-

fine the non-existent or null edges as Σ̂
p
e ⊆ Σ

p
e and Σ̂

q
e ⊆ Σ

q
e. Isomorphism

fp,q : Σ v
p → Σ v

q, assigns one vertex of Gp to only one vertex of Gq. The

Table 1
Basic features of BP, FBP and SFBP algorithms.

1st ref. Algorithm Linear solver Computational Cost Restrictions Symmetric runtime

[39] BP Hungarian O((n + m)3) No No
[40] Jonker–Volgenant
[41] FBP Hungarian Insertion and deletion costs
[42] Jonker–Volgenant O(max(n, m)3) No convergence

SFBP Hungarian Yes
Jonker–Volgenant

Fig. 1. Example of the local sub-structures: Degree centrality and Clique centrality.
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