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In the framework of online object retrieval with learning, we address the problem of graph matching using
kernel functions. An image is represented by a graph of regions where the edges represent the spatial rela-
tionships. Kernels on graphs are built from kernel on walks in the graph. This paper firstly proposes new ker-
nels on graphs and on walks, which are very efficient for graphs of regions. Secondly we propose fast
solutions for exact or approximate computation of these kernels. Thirdly we show results for the retrieval
of images containing a specific object with the help of very few examples and counter-examples in the frame-
work of an active retrieval scheme.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the goals of the content-based image retrieval is to retrieve
images containing a particular object or type of object, animal or per-
son, whose shape can be very variable and set in a background also
very variable. Global signatures are not a good way to solve this pro-
blem, especially if the context (background) brings no information.
Approaches based on points of interest are interesting, but must be
used with a high number of points to be efficient, and thus have a
very high computational complexity. A promising approach is to
represent an object by a set of regions characterized on one hand by
intrinsic features (such as color, texture or shape), and on the other
hand by spatial relations between them. The adjacency graph of
regions constitutes a structure well adapted to represent objects in
their infinite variability. However the segmentation into regions is
very difficult, since there is no unique solution (it depends on the
level of detail expected for this segmentation) and it is very sensitive
to changes in the lighting, in the scale and in the aspect of the object.
The number and the characteristics of the regions representing the
same object are thus very variable from one image to the other. The
problem of retrieving images including a type of object can thus be
considered as a problem of inexact graph matching.

A retrieval system needs a similarity measure and a retrieval
engine. The most popular – because the most efficient – way to per-
form classification or browsing in a database is the Support Vector
Machines (SVM). SVM are state-of-the-art large margin classifiers
which have demonstrated remarkable performances in image retrie-
val, when associated with adequate kernel functions.

The problem of graph comparison is a topic which has been widely
studied in the literature for several decades [1]. One reason is that this
problem occurs in many domains as various as computer or social
networks, chemistry, or pattern recognition. Another reason is that
graphs may be of very various kinds, in their size, their structure, in
the type of information they represent and so on and thus they gave
rise to many different methods to compare and classify them, all
methods passing through graph matching.

A first way to classify methods of graph matching concerns the
structure of the graphs: there are two main categories of methods,
depending whether the structure of both graphs is the same or if it
may differ. The first category addresses the graph isomorphisms for
which both graphs have the same number of vertices and the same
number of edges, each vertex of one graph being matched with one
and only one vertex of the other graph and the same for the edges.
There is a wide literature on the problem of finding the best iso-
morphism between graphs or sub-graphs [2]. This type of method is
used for example in chemistry, or in computer-aided design, where
vertices and edges are affected with symbolic labels, such as “carbon”
or “hydrogen” for vertices, and “over” or “under” to characterize
edges in pattern recognition. The constraint of having exactly the
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same structure is often too strong and is relaxed in the second cate-
gory where one vertex can match zero, one or several vertices of
the other graph. The problem of comparing graphs with unlabeled
vertices and edges is a NP-hard problem. When the vertices and the
edges are labeled with symbols, the same problem is much simpler,
since the combinatorial is much smaller: a vertex with label l is only
matched with a vertex with the same label l, but it is still a NP-hard
problem [3]. In our problem of image retrieval from datasets, we
deal with graphs whose both vertices and edges are assigned with
vectors of values. And we need not only to compare graphs in terms
of structure but we need a similarity also taking into account the simi-
larity between vertices and between edges.

The problem we address in this paper has two main challenges:
compare graphs of various structures and deal with vertices and
edges attributed with numerical values. As vertices and edges include
numerical information, these graphs are called Attributed Relational
Graphs (ARG). In our case, vertices represent regions of the image
and edges represent adjacencies between regions (neighbor). Edges
are directed since they are described by information such as: how
much one region is over another one. There are no multiple edges
between two vertices (two regions), but loops are possible in order
to allow multiple matches (one vertex to several).

Because of the computational cost, algorithms to compute distances
between graphs are either complete (they give the optimal solution,
possibly with an exponential complexity) or incomplete (the complex-
ity is polynomial but the optimal solution is not guaranteed [4]). Con-
cerning the former ones, most methods use search trees and filtering
to prune these trees. A* or “branch and bound” algorithm is then used
to solve the problem [5–7]. In [8] A* algorithm is used to perform ARG
isomorphism for an image retrieval task. Away to find the isomorphism
between graphs is to represent them in a canonical way and then to
compare these representations. The algorithm developed by McKay
[9] is “regarded by many authors as the fastest isomorphism algorithm
available today” [1]. Another solution is graph editing [10], which con-
sists in deforming one graph into the other one. The drawback of com-
plete methods is that, because of the computational cost, they are
limited to small graphs [5]. Another algorithm based on graph deforma-
tions is the Graph TransformMatching, which is applied to image regis-
tration [11]. In many cases, such as clustering or similar document
retrieval, the exact distance between graphs is not crucial and an
approximation is sufficient. In incompletemethods, combinatorial opti-
mization algorithms are used, with quadratic optimization like Softas-
sign [12], or with estimation of distribution [13], or with taboo search
[14], etc. Recently Vishwanathan et al. [15] proposed a method to com-
pute a graph kernel from kernels on walks, which improves the time
complexity. It is particularly efficient for sparse graphs, but limited to
graphs with unlabeled vertices.

Recent approaches of graph comparison consider graphs as sets of
substructures such as chains, walks, trees and even graphlets (small
subgraphs). As we are interested in matching only a part of the image
(the object and not its background), this approach seems able to mea-
sure a similarity between sets of regionswith their layout.We thus pro-
pose to build kernels on graphs from kernels on walks to compute the
similarity between images. In the previous papers using random
walks [16–19,15], authors only compare walks of equal length. But in
our application, we need to compute a similarity between graphs of dif-
ferent orders,whichmeans that one vertex can bematchedwith several
vertices of the other graph, thiswill be achieved by allowing loops in the
walks.

We will show that the search tree is a representation well suited
to a recursive building of the walks in a graph and that the branch
and bound algorithm allows a fast computation of the best match.
Moreover with this algorithm and the similarities we propose, we
are able to compute either the exact distance or an approximation.

The novelty of this paper is firstly to propose new kernels between
graphs and between walks, which are more efficient and faster than

existing ones (Section 2). Secondly we propose solutions to the inexact
graph matching problem for attributed graphs of regions (Section 3).
Thirdly we show results for the retrieval of images containing a specific
object with the help of very few examples and counter-examples in the
framework of an active retrieval scheme (Section 4).

2. Kernels on graphs

Kernel-based methods, such as Support Vector Machines (SVM),
have shown their robustness for image retrieval and many other
domains, thanks to convex minimization criterion. Kernel functions
can be seen as similarity functions, which respect properties known
as Mercer properties [20].

The idea of syntax-driven kernels [3] as opposed to model-driven
kernels is to define a kernel on graph from kernel on parts of the
graphs. Such a kernel was first defined by Haussler with the convolu-
tion kernel [21]. Then Kondor et al. [22] defined kernels over discrete
structures which can be regarded as the discretization of Gaussian
kernels. Since 2003 many different kernels have been defined that
can be arranged according to the kind of structure they consider:

• random walks in [17–19,15]
• paths in [23]: a path is a walk which does not go twice through the
same vertex

• trees in [24,25]
• graphlets in [26]: graphlets are subgraphs of small order, typically 3
to 5 vertices. In [26], they only capture the structure of the graph,
they do not carry any information on vertices and edges.

Most of these kernels have been designed for chemical or bioinfor-
matics applications, where vertices and edges carry very few informa-
tion, usually only a label and sometimes a vector of small dimension
(less than 4 attributes). Moreover these methods lead with graphs
of small order, except [26] which deals with graphs of several dozens
or even several hundreds of vertices (but unlabeled).

There are twomain approaches to definekernels on graphs, depend-
ing on the way the embedding of the graph into a vector space is
performed.

The first approach is explicit. This means that only a subset of fea-
tures extracted from the graphs can be considered (edge number,
walks, spectrum…). In order to choose such features, prototypes are
built using techniques like K-Means, PCA [27], MIL-based techniques
[28] or randomized forests [29]. From a set of prototypes or of fre-
quent patterns, an explicit embedding consists for example [30] in
computing the distance to each of the prototypes and then to use a
classical vector-based kernel. In [31] the vertices are embedded into
a vector space thanks to a membership function to the pattern, this
membership function can either be binary or obtained by diffusion
of the pattern through the edges of the graph.

This approach bounds the dimension of vectors in the induced
space, since they need to be explicitly stored. Moreover it leads to a
global parametrization (such as the number of prototypes) which
needs to be tuned for each database or each query. Then, the compar-
ison of two graphs always depends on this global parameter. A solu-
tion to this problem can be to perform an online computation of the
prototypes during the retrieval [32,33].

The second approach performs an implicit embedding of graphs into
a vector space, which means that the vectors in the space induced by
the kernel function are never computed. This can be done using spectral
techniques formatching pairs [34] or for high ordermatching, with ten-
sors [35]. Other kernelswere proposed,which behave like the similarity
functions based on votes, but with respect to mathematical properties
[36–38].

In this paper, we focus on this last approach and especially on ker-
nels based on random walks, since they are in our opinion the most
adapted to compare graphs whose information is carried by the ver-
tices and the edges, rather than by the structure of the graph.
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