Tetrahedron Letters 52 (2011) 5508-5511

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Microwave assisted copper-free Sonogashira coupling/5-exo-*dig* cycloisomerization domino reaction: access to 3-(phenylmethylene)isoindolin-1-ones and related heterocycles

Malik Hellal, Gregory D. Cuny*

Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham & Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA

ARTICLE INFO

Article history: Received 20 July 2011 Revised 9 August 2011 Accepted 11 August 2011 Available online 19 August 2011

Keywords: Isoindoline Domino reaction Cycloisomerization Sonogashira coupling Microwave

ABSTRACT

An efficient microwave assisted one-pot synthesis of substituted 3-(phenylmethylene)isoindolin-1-ones is reported via a copper-free Sonogashira coupling and a regioselective 5-exo-*dig* cycloisomerization. This domino reaction was also extended to other related heterocycles.

© 2011 Elsevier Ltd. All rights reserved.

Considerable attention has been devoted to heterocyclic ring formation by intramolecular annulations of carboxylic acids,¹ esters,² ketones,³ alcohols,⁴ amines⁵ and amides⁶ to alkynes. In particular, various synthetic methods for the preparation of substituted 3-(phenylmethylene)isoindolin-1-ones and related systems have been developed⁷ due to their presence in a wide variety of bioactive natural products, such as fumaridine⁸ and lennoxamine.⁹ This structural motif is also found in a number of molecules demonstrating interesting pharmaceutical properties, such as the local anesthetic **A**¹⁰ and the AChE inhibitor **B**¹¹ (Fig. 1).

Included among the various strategies for preparing 3-(arylmethylene)isoindolin-1-ones are different metal-catalyzed reactions, such as Heck–Suzuki–Miyaura domino reactions involving ynamides and arylboronic acids,¹² Sonogashira coupling-carbonyl ation–hydroamination one-pot reactions of dihalides,¹³ intramolecular Heck reactions of enamides,¹⁴ and one-pot elimination–cycliza tion–Suzuki coupling of *o*-[gem-dihalovinyl]benzamides and arylboronic acids.¹⁵ Recently, Ma and coworkers reported an Ullman coupling-heteroannulation of 2-bromobenzamides and terminal alkynes.¹⁶ Herein, we report the development of a microwave assisted Sonogashira coupling/5-exo-*dig* cycloisomerization domino reaction for the synthesis of 3-(phenylmethylene)isoindolin-1-ones and related heterocycles. In order to investigate the feasibility of a copper-free Sonogashira coupling-cycloisomerization domino strategy, different reaction variables such as Pd source, ligand, base and solvent were investigated using microwave (MW) heating at 120 °C for 30 min.¹⁷ As indicated in Table 1, the reaction was performed on 2-bromobenzamide **1**, and phenylacetylene in DMF. The choice of

Figure 1. Structure of natural products and biologically active compounds containing isoindolinones.

^{*} Corresponding author. Tel.: +1 617 768 8640; fax: +1 617 768 8606. *E-mail address*: gcuny@rics.bwh.harvard.edu (G.D. Cuny).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.08.070

Table 1

Optimization of the reaction conditions

Entry	[Pd]	Ligand	Base	Solvent	Yield ^a (%)
1	$Pd(OAc)_2$	BINAP	DBU	DMF	39
2	Pd ₂ (dba) ₃	BINAP	DBU	DMF	12
3	$PdCl_2(PPh_3)_2$	BINAP	DBU	DMF	15
4	$Pd(PPh_3)_4$	BINAP	DBU	DMF	23
5	PdCl ₂ (MeCN) ₂	BINAP	DBU	DMF	89
6	PdCl ₂ (MeCN) ₂	XantPhos	DBU	DMF	75
7	PdCl ₂ (MeCN) ₂	dppf	DBU	DMF	41
8	PdCl ₂ (MeCN) ₂	XPhos	DBU	DMF	30
9	PdCl ₂ (MeCN) ₂	PPh ₃	DBU	DMF	68
10	PdCl ₂ (MeCN) ₂	-	DBU	DMF	16
11	PdCl ₂ (MeCN) ₂	BINAP	Cs ₂ CO ₃	DMF	49
12	PdCl ₂ (MeCN) ₂	BINAP	K ₂ CO ₃	DMF	38
13	PdCl ₂ (MeCN) ₂	BINAP	NEt ₃	DMF	0
14	PdCl ₂ (MeCN) ₂	BINAP	NaOtBu	DMF	0
15	PdCl ₂ (MeCN) ₂	BINAP	DBU	dioxane	0
16	PdCl ₂ (MeCN) ₂	BINAP	DBU	<i>i</i> -PrOH	0
17	PdCl ₂ (MeCN) ₂	BINAP	DBU	Toluene	24
18	PdCl ₂ (MeCN) ₂	BINAP	DBU	MeCN	51

Reaction conditions: 2-bromobenzamide (0.5 mmol), phenylacetylene (0.75 mmol). [Pd] (5 mol %), Ligand (5-10 mol %), Base (1 mmol), DMF (2 mL), MW 120 °C, 30 min.

¹ Isolated vield.

catalyst (Pd source and ligand) was critical for the reaction. The combination of PdCl₂(MeCN)₂ and BINAP was found to be the optimal catalyst for the reaction by furnishing (Z)-isomer 2 in 89% yield (Table 1, entry 5). The yields decreased dramatically when Pd(OAc)₂, Pd₂(dba)₃, PdCl₂(PPh₃)₂ or Pd(PPh₃)₄ were used (entries 1-4). Further investigation revealed that the reaction was also dependent on the presence and choice of ligand. For example, lower yields were observed when Xantphos, dppf, Xphos, and PPh₃ were used (entries 6-9) or in the absence of a ligand (entry 10).

Next, the base and solvent were further investigated. Replacing DBU with K₂CO₃ or Cs₂CO₃ (entries 11 and 12) resulted in poorer yields, whereas no desired product was isolated in the presence of NEt₃ or NaOt-Bu (entries 13 and 14). Performing the reaction in a variety of other solvents also proved detrimental. For example, no reactions were observed in either 1,4-dioxane or *i*-PrOH, and significant decreases in yields were observed in toluene and acetonitrile, due to the lack of solubility of 1 (entries 15–18).

Finally, the influences of temperature and heating source on the reaction were examined. Reducing the reaction temperature to 80 or 100 °C resulted in decreased yields of 31% and 45%, respectively. In addition, the desired product was obtained in only 13% yield using conventional heating at 120 °C for 30 min. The yield could be improved to 80% when the conventional heating was extended to 24 h. Overall, the optimized reactions conditions were: 2-bromobenzamide 1 (1 equiv), phenylacetylene (1.5 equiv), PdCl₂(MeCN)₂ (5 mol %), BINAP (5 mol %), DBU (2 equiv) in DMF under microwave irradiation at 120 °C for 30 min.

With the optimized conditions identified, the scope of this palladium-catalyzed reaction was extended to a series of 2-halobenzamides 3 (Table 2). A wide range of N-substituents were tolerated, including benzyl, allyl, phenyl, and alkyl groups (entries 1-5). Furthermore, this one-pot reaction was highly stereoselective, and gave the Z-isomer as the main product. These results are consistent with a based-mediated cyclization process. As

Ta	ab	le	2	
-				

Substrate scope of the reaction^a

^a Reaction **3a–i** (0.5 mmol), phenylacetylene conditions: (0.75 mmol). PdCl₂(MeCN)₂ (5 mol %), BINAP (5 mol %), DBU (1 mmol), DMF (2 mL), MW 120 °C, 30 min.

- Ratio Z:E = 80:20. f
- 140 °C. ratio Z:E = 82:18.
- ^g 140 °C.

Isolated yield.

Ratio *Z*:*E* = 88:12.

Ratio *Z*:*E* = 93:7.

Download English Version:

https://daneshyari.com/en/article/5268235

Download Persian Version:

https://daneshyari.com/article/5268235

Daneshyari.com