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over the original one.

IDR/QR, which is an incremental dimension reduction algorithm based on linear discriminant analysis (LDA) and
QR decomposition, has been successfully employed for feature extraction and incremental learning. IDR/QR can
update the discriminant vectors with light computation when new training samples are inserted into the training
data set. However, IDR/QR has two limitations: 1) IDR/QR can only process new samples one instance after an-
other even if a chunk of training samples is available at a time; and 2) the approximate trick is used in IDR/QR.
Then there exists a gap in performance between incremental and batch IDR/QR solutions. To address the prob-
lems of IDR/QR, in this paper, we propose a new chunk IDR method which is capable of processing multiple
data instances at a time and can accurately update the discriminant vectors when new data items are added
dynamically. Experiments on some real databases demonstrate the effectiveness of the proposed algorithm
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1. Introduction

Linear discriminant analysis (LDA) [1] is a well-known supervised
feature extraction algorithm for pattern recognition. LDA aims to find
a set of projection vectors to maximize the between-class scatter matrix
and minimize the within-class scatter matrix at the same time. In many
applications, however, LDA often suffers from the so-called small sam-
ple size (SSS) problem or undersampled problems [2], where the num-
ber of samples is smaller than the dimensionality of the feature space.
To address this problem, many efficient LDA-based methods, e.g. princi-
pal component analysis (PCA) + LDA [3], null space based LDA (NLDA)
[4-6], LDA/GSVD |[7], complete CLDA (CLDA) [8], and dual-space LDA
(DSLDA) [9], have been proposed to deal with the high-dimensional
data and learn the optimal discriminant vectors.

PCA + LDA, also called Fisherfaces, may be the most popular method
to address the SSS problem. To make the within-class scatter nonsingular,
it first uses PCA to reduce the dimensionality of samples to n — ¢, where n
is the number of the training samples and c is the number of the classes,
before the application of LDA. Since the smallest c — 1 projection compo-
nents are thrown away in the PCA step, some useful discriminatory
information will be lost. The NLDA method supposes that the most dis-
criminant information is contained in the null space of within-class scat-
ter. In order to obtain the discriminant information in the null space of
within-class scatter, NLDA firstly transforms the data into the null space
of within-class scatter and then maximizes the between-class scatter. A

* This paper has been recommended for acceptance by Seong-Whan Lee.
* Corresponding author.
E-mail address: luguifu_jsj@163.com (G.-F. Lu).

http://dx.doi.org/10.1016/j.imavis.2015.01.002
0262-8856/© 2015 Elsevier B.V. All rights reserved.

drawback of NLDA is that it solves the discriminant vectors only in the
null space of the within-class scatter. Then the discriminant information
in the range space of the within-class scatter will be lost.

LDA/GSVD, which is a LDA method based on generalized singular
value decomposition, uses the Moore-Penrose generalized inverse of
the total-scatter to replace the inverse of the within-class scatter de-
fined in the LDA objective function. However, as pointed in [10], LDA/
GSVD obtains the same projection subspace as NLDA when the rank of
the total-class scatter is equal to the sum of the ranks of within-class
and between-class scatter. Therefore, LDA/GSVD will suffer the same
drawback of NLDA. The basic ideas of CLDA and DSLDA, respectively
proposed by Yang et al. and Wang et al., are the same. They can obtain
their discriminant vectors in the null space of within-class scatter and
its complementary space, respectively.

There exists a common aspect of above algorithms, that is, they use
singular value decomposition (SVD) or GSVD to compute the discrimi-
nant vectors. Compared with QR decomposition, however, SVD/GSVD
is computationally expensive [11]. In [12], Ye et al. proposed a new
LDA-based algorithm, called LDA/QR, which uses QR decomposition
rather than SVD or GSVD to reduce the dimensionality of the training
samples. LDA/QR can address the SSS problem, while achieving efficien-
cy and scalability simultaneously.

The aforementioned LDA-based algorithms are all batch algorithms.
That is, we must obtain all the training samples in advance. Then, these
algorithms have to discard the discriminant vectors acquired in the past
and repeat the training processing from the beginning when some new
data items are inserted dynamically. To use these algorithms in on-line
scenarios, it is crucial to update the projection matrix with light compu-
tation instead of full retraining when new data items are added
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dynamically. Incremental learning' (or online learning) can provide a
way to address the above problem.

Recently, incremental learning has received a great attention in
many practical applications, and some incremental LDA-based algo-
rithms have been proposed. To learn the discriminant vectors of LDA
incrementally, Pang et al. [13] proposed an incremental LDA (ILDA)
method to update within-class scatter and between-class scatter.
Then Pang's method can be used for classification of data streams.
However, Pang's method is computationally expensive since no in-
cremental method is introduced for the subsequent generalized
eigenanalysis of the scatter matrices. By using fast SVD updating
technique [14], Zhao et al. [15] proposed a new incremental LDA
method, namely GSVD-ILDA, to incrementally update the discrimi-
nant vectors of LDA/GSVD when new data items are added. However,
an approximate trick is used in GSVD-ILDA and there exists a perfor-
mance gap between GSVD-ILDA and LDA/GSVD solutions. By bor-
rowing the idea of incremental principal component analysis
(IPCA) [16], Kim et al. [17,18] proposed another incremental LDA to
update the discriminant vectors when new samples are inserted
into the training data set. Similar to GSVD-ILDA, Kim's method is
also an approximate technique. In [19], Uray et al. proposed an incre-
mental LDA algorithm, called ILDAaPCA, which is a combination of
two linear subspace algorithms, i.e., an incremental PCA and LDA.
ILDAaPCA first performs IPCA and then updates the projection matrix
of LDA on the updated subspace obtained by IPCA. Finally, ILDAaPCA
projects the projection matrix of LDA onto another subspace of de-
sired size while preserving the full discriminative information.
Thus, ILDAaPCA can combine reconstructive and discriminative in-
formation of the training sample.

In [10], Zheng et al. proposed a modified dual-space LDA (MDSLDA)
and its corresponding incremental extension. MDSLDA first projects all
the training data onto the subspace spanned by the class means before
the application of DSLDA. They also proposed an incremental MDSLDA
which can accurately update the discriminant vectors of MDSLDA. Based
on CLDA, Lu et al. [20,21] proposed two different implementations of in-
cremental CLDA. Based on maximum margin criterion (MMC) [22,23],
Yan et al. proposed an incremental implementation of MMC (IMMC)
[24,25] which borrows the idea of the candid covariance-free incremental
PCA (CCIPCA) [26].

To overcome the SSS problem and develop incremental LDA algo-
rithm, in [27,28], Ye et al. proposed another incremental dimension
reduction method via QR decomposition (IDR/QR). IDR/QR use QR
decomposition of the class means matrix rather than SVD to reduce
the dimension of the training samples. The projection vectors are
contained in the range space of the class means matrix. By using ef-
ficient QR-updating techniques, IDR/QR can update the discriminant
vectors with very low computation. Note that IDR/QR can also be
performed in batch mode and the batch IDR/QR is the same as LDA/
QR except that LDA/QR computes its discriminant vectors in the
range space of between-class scatter where the global centroid is
subtracted. Although some experiments on real database demon-
strate the effectiveness of IDR/QR, it still has two limitations:
1) IDR/QR can only process new samples one instance after another
even if a chunk of training samples is available at a time; 2) the ap-
proximate trick is used in IDR/QR. Then there exists a gap in perfor-
mance between incremental and batch IDR/QR solutions.

To solve the limitations of IDR/QR, in this paper, we propose
a new chunk IDR which is capable of processing multiple data
instances at a time and can accurately update the discriminant

1 Incremental learning methods are designed to address real-world situations when the
samples are frequently presented. There are two kinds of manner, i.e., sequential manner,
where only one new sample is presented at a time, and chunk manner, where a subset of
samples (at least two samples) is presented at a time.

vectors when new data items are added dynamically. Firstly, we pro-
pose a new implementation of batch IDR/QR, which is equivalent to
the original implementation of batch IDR/QR theoretically but
whose computational cost is lower than the original ones. Then,
based on our proposed new implementation of batch IDR/QR, we
propose a new chunk IDR. Experiments on some real-world data-
bases demonstrate the effectiveness of the proposed algorithm
over the original one. Note that in [29], Pen has already proposed a
chunk IDR/QR. However, Pen's method is also an approximate trick
and the computational complexity of Pen's method is more expen-
sive than Ye's incremental IDR/QR for single data processing.

The rest of this paper is organized as follows. In Section 2, we review
briefly the LDA method and the IDR/QR method. In Section 3, we pro-
pose the new implementation of batch IDR/QR. The new chunk IDR is
presented in Section 4. Section 5 is devoted to the experiments. Finally,
we conclude the paper in Section 6.

2. Related works
2.1. Outline of LDA

LetX = {x/,j=1,2,...n;i=1,2,....c} be a d-dimensional sample set
with n data points, where c is the number of the classes, n; is the number
of the samples of the ith class, x{ is the jth sample of the ith class and

>°¢_ 1n; = n. In LDA, three matrices, called within-class, between-
class and total scatter matrices, are defined as follows:
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where the centroid m; of the ith class is defined as m; = nl >
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The classical LDA algorithm aims to find an optimal projection ma-
trix G that maximizes the so-called Fisher's criterion

-1
G=arg mcax trace < (GTSWG> (GTSbG)> (5)
Table 1
Computational complexity of Algorithms 1-2.
Step 1 Step 2 Step 3 Step 4
Algorithm 1 0(dn) 4dc®> — 4¢3 /3 2dnc 2dc®
Algorithm 2 0(dn) 2dnc 2dc? 2nc?
Step 5 Step 6 Step 7 Step 8
Algorithm 1 2nc? 2c3 o(c®) 2dc?
Algorithm 2 2c3 0(dc) o(c3) 2dc®
Total computational cost
Algorithm 1 8 dc® + 2/ 3 + 2dnc + 2nc>+ 0(c®) + 0(dn)
Algorithm 2 4dc® +2¢ + 0(dc) + 2dnc + 2nc*+ 0(c3) + 0(dn)
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