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Human action recognition has lots of real-world applications, such as natural user interface, virtual reality, intel-
ligent surveillance, and gaming. However, it is still a very challenging problem. In action recognition using the vis-
ible light videos, the spatiotemporal interest point (STIP) based features are widely usedwith good performance.
Recently, with the advance of depth imaging technology, a newmodality has appeared for human action recog-
nition. It is important to assess the performance and usefulness of the STIP features for action analysis on the new
modality of 3D depth map. In this paper, we evaluate the spatiotemporal interest point (STIP) based features for
depth-based action recognition. Different interest point detectors and descriptors are combined to form various
STIP features. The bag-of-words representation and the SVM classifiers are used for action learning. Our compre-
hensive evaluation is conducted on four challenging 3D depth databases. Further, we use two schemes to refine
the STIP features, one is to detect the interest points in RGB videos and apply to the aligned depth sequences, and
the other is to use the human skeleton to remove irrelevant interest points. These refinements can help us have a
deeper understanding of the STIP features on 3D depth data. Finally, we investigate a fusion of the best STIP
features with the prevalent skeleton features, to present a complementary use of the STIP features for action rec-
ognition on 3D data. The fusion approach gives significantly higher accuracies thanmany state-of-the-art results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Human actions convey a significant amount of information for
human interaction with the environment, human-to-human communi-
cation and human-to-machine interaction. Human action recognition is
a very active research topic in computer vision, aiming to automatically
recognize and interpret ongoing human actions. The ability to recognize
complex human actions from videos enables the construction of several
important applications such as natural user interfaces, virtual reality,
intelligent surveillance and gaming [1,2].

Although human action recognition is very important for many real-
world applications, it is still a challenging problem. A number ofmethods
have been proposed to solve the action recognition problem [2]. Among
variousmethods, the spatiotemporal interest point (STIP) based features
have shown good performance for action recognition in RGB videos [3].

Very recently, depth imaging technology has made a significant
progress, which brings a broader scope for human action recognition.
Using a consumer depth sensor, e.g., the Kinect [4], depth information
can be captured simultaneously with the RGB videos. Moreover, from
the depth maps the geometric positions of skeleton points can also be

detected effectively [4]. As a result, the depth data provides a promising
modality for action recognition.

In traditional RGB video-based action recognition, several spatio-
temporal features have been proposed to characterize human actions
using local motions in a space-time volume. Local features possess
many advantages, e.g., it can avoid possible problems caused by inaccu-
rate segmentation or partial occlusions. In the literature, many spatio-
temporal feature detectors [5–8] and descriptors [9–12] have been
proposed and shown promising performance for action recognition in
RGB videos. However, it has not been well studied yet on whether these
spatiotemporal interest point (STIP) features can be useful or not for
depth-based action recognition.

In this paper, we perform a comprehensive evaluation of different
spatiotemporal interest point features for depth-based human action
recognition. In particular, three interest point detectors and six local de-
scriptors are adopted, in total there are 14 different detector/descriptor
combinations adopted for the evaluation. Experiments are conducted
on four challenging depth action databaseswith the same experimental
setup for each feature. Besides, we also extend the capability of using
spatiotemporal features by utilizing the corresponding RGB videos,
and the skeleton joint positions, in order to have a deep understanding
of the STIP features on depth data. Two different interest point re-
finement approaches are examined. Moreover, a feature-level fusion
method is presented to combine the best spatiotemporal features on
each database with the skeleton joint features. From the experimental
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results and comparisons with the state-of-the-art approaches for
depth-based action recognition, we show the usefulness of spatiotem-
poral features for action recognition in depth videos.

The rest of the paper is organized as follows: the related work on
depth-based action recognition is reviewed in Section 2. Different
spatiotemporal interest point features are introduced in Section 3. Four
different depth action/activity databases are presented in Section 4.
Experiments are conducted and presented in Section 5. Two STIP refine-
ment approaches are introduced and evaluated experimentally. A fusion
of the best STIP features with skeleton features is shown in Section 6.
Finally, we draw conclusions.

2. Related work on depth-based action recognition

The depth sensors offer several advantages over traditional video
cameras, e.g., working in low light conditions, giving a real 3D measure
invariant to surface color and texture, and resolving silhouette ambigu-
ities in pose [4]. Depth sensors can significantly simplify the task of
background subtraction and human detection. Because of the advan-
tages, the depth sensors, e.g., the Kinect, have attracted researchers'
attentions from many areas including 3D modeling, object recognition,
gesture analysis, etc. Recently, action analysis and recognition in depth
videos have become a very active topic. In this quite novel area, different
approaches have been proposed. Here we give a brief overview of the
methods for depth-based action recognition.

Li et al. [13] proposed a sampling of 80 representative 3D points to
describe a salient posture. In order to select the representative points,
each depth map was projected onto three orthogonal Cartesian planes:
xy, xz and zy, and then a specified number of 2D points were sampled at
equal distance along the contours of the projected depth data. An action
graph was used to model the dynamics of actions. Their method has
smaller error rates than using 2D silhouettes.

Xia et al. [14] proposed to use histograms of 3D joint locations
(HOJ3D) for action recognition. In order to be view invariant, they
aligned the spherical coordinates with the person's specific direction.
The hip center joint served as the center of the coordinate system. By
projecting the vector from left-hip center to the right-hip center to the
horizontal plane, the horizontal reference vector was obtained. The
zenith reference vector passes through the coordinate center and is per-
pendicular to the ground plane. According to different joint's contribu-
tion to the body motion, they chose 9 joints to compute the 3D spatial
histogram by partitioning the 3D space into 84 bins. After that, the
LDA was performed to extract the dominant features, so that each
framewill have a n− 1 dimensional feature vector, where n is the num-
ber of classes. The K-means clustering was performed to represent each
posture as a visual word. A discrete HMM was trained for action
recognition.

Vieira et al. [15] proposed the Space–Time Occupancy Patterns
(STOP) to represent sequences of depth maps. In their representation,
the space and time axes were divided into multiple segments so that
each depth map sequence was embedded in multiple 4D grids. They
computed occupancy feature in each cell. After that, they employed a
Nearest Neighbor classifier based on the cosine distance for action
recognition.

Yang and Tian [16] combined static posture, motion property, and
overall dynamics to form an action feature descriptor called EigenJoints.
In order to remove noisy frames and reduce computational cost, they
performed informative frame selection based on Accumulated Mo-
tion Energy (AME). A non-parametric Naive-Bayes-Nearest-Neighbor
(NBNN) classifier was used for action classification.

In order tomake skeleton representation invariant to sensor orienta-
tion and global translation of the body, Miranda et al. [17] proposed a
pose descriptor vector in a torso-based coordinate system. A predefined
key pose set was used to build SVM classifiers. Because each gesture
can be viewed as a sequence of key poses, a decision forest was used
to search for key pose sequences. In recognition stage, the key pose

classifiers can recognize key poses performed by the user and then de-
termine the corresponding gesture class.

Yang et al. [18] proposed to generate three 2D Depth Motion Maps
(DMM) from each 3D depth frame according to front, side, and top
views. The HOG feature is computed from DMM to represent an action
video. They used a linear SVM classifier to recognize actions.

In [19], Wang et al. extracted two features, pairwise relative posi-
tions and Local Occupancy Patterns at each joint. Each skeleton joint i
has 3 coordinates Fi(t) = (xi(t), yi(t), zi(t)) at frame t, the pairwise
relative position features are extracted for joint i as: pi = {pij|i ≠ j} =
{pi− pj|i≠ j}. In order tomodel the interaction between human subject
and objects, they computed the LOP feature based on the 3Dpoint cloud
around a particular joint. After that, Fourier temporal pyramidwas used
to represent the temporal dynamics of the frame-level features. In order
to deal with the errors of the skeleton tracking and better characterize
the intra-class variations, they defined an actionlet as a conjunction
structure on base features. One base feature is the Fourier pyramid fea-
ture of each joint. A data mining algorithmwas used to find discrimina-
tive actionlets for action recognition.

In [20], Sung et al. used all three channels, i.e., RGB, depth and skel-
eton positions, for human activity recognition. They extracted hand po-
sition information, body pose features and motion from skeleton joints.
For both RGB and depth images, they used the Histogram of Oriented
Gradients (HOG) feature in two settings. One is to compute HOG in
both the RGB and depth within the bounding box of the person. The
other is to get the bounding boxes for the head, torso, left arm, and
right arm, based on the skeleton locations, and compute the HOG in
RGB and depth with each of the four bounding boxes. A two-layered
maximum-entropy Markov model was trained to capture the hierar-
chies of human activities and transitions between sub-activities over
time.

Wang et al. [21] proposed a semi-local feature called random
occupancy patterns (ROP). A depth sequence is treated as a 4D
volume. Given a subvolume, the ROP feature was computed as: oxyz ¼
δ Σq∈binxyzt

Iq
� �

, where Iq=1 if the point cloud has a point in the location
q and Iq = 0 otherwise. δ(⋅) is a sigmoid normalization function:
δ xð Þ ¼ 1

1þe−βx. Because the sizes of the 4D subvolume are extremely
large and the features are highly redundant, a weighted sampling
method was applied to reduce the complexity and obtain the dis-
criminative features. They also utilized a sparse coding method to
robustly encode those features. The SVM classifier was used for
classification.

More recently, Oreifej et al. [22] represented the depth sequence
using a histogram capturing the distribution of the surface normal ori-
entation in 4D space of time, depth, and spatial coordinates (HON4D
feature). A 600-cell polychoron with 120 vertices was used to quantize
the 4D space and represent possible directions of the 4D normals. The
SVM classifier was used for action classification.

Koppula et al. [23] proposed to jointly model the human activities
and object affordances as a Markov Random Field where the nodes rep-
resent objects and sub-activities, and the edges represent the relation-
ships between object affordances, their relations with sub-activities,
and their evolutions over time. In order to find atomic movements in
an activity, they also performed temporal segmentation of the frames.
They used a multi-class SVM classifier for action recognition.

Ni et al. [24] proposed the Depth-Layered Multi-Channel STIP
(DLMC-STIP) and Three-Dimensional Motion History Images (3D-
MHIs). For DLMC-STIP, after getting local feature descriptors in a
video, they introduced a set of (M) depth layers L1z = [z1l , z1u], L2z =
[z2l , z2u], …, LMz = [zMl , zMu ], with lower and upper boundaries denoted
as zMl and zM

u for them-th depth layer, so a detected spatio-temporal in-
terest point by Harris3D detector would be located in one specific layer.
In this way they formed multi-channel histograms for feature descrip-
tion using the HOGHOF descriptor. The 3D-MHIs aremotion history im-
ages (MHIs), including both forward-DMHIs (fDMHIs) and backward-
DMHIs (bDMHIs). The SVM classifiers were used for action recognition.
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