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This paper introduces four classes of rotation-invariant orthogonal moments by generalizing four existing
moments that use harmonic functions in their radial kernels.Members of these classes share beneficial properties
for image representation and pattern recognition like orthogonality and rotation-invariance. The kernel sets of
these generic harmonic function-based moments are complete in the Hilbert space of square-integrable contin-
uous complex-valued functions. Due to their resemble definition, the computation of these kernelsmaintains the
simplicity and numerical stability of existing harmonic function-based moments. In addition, each member of
one of these classes has distinctive properties that depend on the value of a parameter, making it more suitable
for some particular applications. Comparisonwith existing orthogonalmoments defined based on Jacobi polyno-
mials and eigenfunctions has been carried out and experimental results show the effectiveness of these classes of
moments in terms of representation capability and discrimination power.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Rotation-invariant features of images are usually extracted by using
momentmethods [1] where an image f on the unit disk (x2 + y2 ≤ 1) is
decomposed into a set of kernels {Vnm|(n,m)∈ℤ2} as

Hnm ¼ ∬
x2þy2 ≤1

f x; yð ÞV�
nm x; yð Þdxdy;

where the asterisk denotes the complex conjugate. According to [2], a
kernel that is “invariant in form” with respect to rotation about the
origin must be defined as

Vnm r; θð Þ ¼ Rn rð ÞAm θð Þ;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; θ ¼ atan2 y; xð Þ;Am θð Þ ¼ eimθ

; and Rn could be of
any form. For example, rotational moments (RM) [3] and complex
moments (CM) [4] are defined by using Rn(r) = rn; continuous generic
Fourier descriptor (GFD) [5] employs ei2πnr for Rn(r); and angular radial
transform (ART) [6] uses harmonic functions as

Rn rð Þ ¼ 1; n ¼ 0
cos πnrð Þ; n ≠ 0:

�

However, the obtained kernels Vnm of RM, CM, GFD, and ART are not
orthogonal and, as a result, information redundancy exists in the
moments Hnm, leading to difficulties in image reconstruction and low

accuracy in pattern recognition, etc. Undoubtedly, orthogonality
between kernels Vnm comes as a natural solution to these problems.
Orthogonality means

Vnm;Vn0m0h i ¼ ∬
x2þy2 ≤1

Vnm x; yð ÞV�
n0m0 x; yð Þdxdy

¼ ∫1

0
Rn rð ÞR�

n0 rð Þrdr∫2π

0
Am θð ÞA�

m0 θð Þdθ ¼ δnn0δmm0 ;

where δij = [i = j] is the Kronecker delta function. It can be seen from
the orthogonality between the angular kernels

∫2π

0
Am θð ÞA�

m0 θð Þdθ ¼ ∫2π

0
eimθe−im0θdθ ¼ 2πδmm0

that the remaining condition on the radial kernels is

∫1

0
Rn rð ÞR�

n0 rð Þrdr ¼ 1
2π

δnn0 : ð1Þ

This equation presents the regulating condition for the definition of a
set of radial kernels Rn in order to have orthogonality between kernels
Vnm.

There exists a number of methods that have their radial kernels
satisfying the condition in Eq. (1) and they can be roughly classified
into three groups. The first employs Jacobi polynomials [7] in r of order n
for Rn(r) obtained by orthogonalizing sequences of polynomial functions
or by directly using existing orthogonal polynomials. Members of this
group are Zernike moments (ZM) [8], pseudo-Zernike moments (PZM)
[2], orthogonal Fourier–Mellinmoments (OFMM) [9], Chebyshev–Fourier
moments (CHFM) [10], and pseudo Jacobi–Fourier moments (PJFM)
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[11] (see [12, Section 6.3], or [13, Section 3.1] for a comprehensive
survey). It was demonstrated recently that the Jacobi polynomial-
based radial kernels of these methods are special cases of the shifted
Jacobi polynomials [14,15]. Despite its popularity, this group of
orthogonal moments however involves computation of factorial
terms, resulting in high computational complexity and numerical
instability, which often limit their practical usefulness.

The second group employs the eigenfunctions of the Laplacian ∇2

on the unit disk as Vnm, similar to the interpretation of Fourier basis
as the set of eigenfunctions of ∇2 on a rectangular domain. These
eigenfunctions are obtained by solving the Helmholtz equation, ∇2

V + λ2V = 0, in polar coordinates to have the radial kernels defined
based on the Bessel functions of the first and second kinds [16]. In
addition, by imposing the condition in Eq. (1) a class of orthogonal
moments is obtained [17] and different boundary conditions were
used for the proposal of a number of methods with distinct definition
of λ: Fourier–Bessel modes (FBM) [18], Bessel–Fourier moments
(BFM) [19], and disk-harmonic coefficients (DHC) [20]. However, the
main disadvantage of these eigenfunction-based methods is the lack
of an explicit definition of their radial kernels other than Bessel func-
tions, leading to inefficiency in terms of computation complexity.

And the last group uses harmonic functions (i.e., complex exponential
and trigonometric functions) for Rn by taking advantage of their
orthogonality:

∫1

0
ei2πnre−i2πn0rdr ¼ δnn0 ; ð2Þ

∫1

0
cos πnrð Þ cos πn0r

� �
dr ¼ 1

2
δnn0 ; ð3Þ

∫1

0
sin πnrð Þ sin πn0r

� �
dr ¼ 1

2
δnn0 ; ð4Þ

∫1

0
cos πnrð Þ sin πn0r

� �
dr ¼ 0; n−n0 is even: ð5Þ

It can be seen that the integrand in Eqs. (2)–(5) is “similar in form”with
that in Eq. (1), except for the absence of theweighting term rwhichpre-
vents a direct application of harmonic functions as radial kernels. This
obstacle was first overcome in [21] by using the multiplicative factor 1ffiffi

r
p

in the radial kernels to eliminate r in the definition of radial harmonic
Fourier moments (RHFM) as

Rn rð Þ ¼ 1ffiffiffi
r

p
1;ffiffiffi
2

p
sin π nþ 1ð Þrð Þ;ffiffiffi

2
p

cos πnrð Þ;

n ¼ 0
n N 0 & n is odd
n N 0 & n is even:

8<
: ð6Þ

Recently, a different strategy was proposed to move r into the
variable of integration, rdr ¼ 1

2dr
2; in the definition of three different

forms of polar harmonic transforms [22]: polar complex exponential
transform (PCET), polar cosine transform (PCT), and polar sine trans-
form (PST). The radial kernels of these transforms are respectively
defined as

Rn rð Þ ¼ ei2πnr
2

; ð7Þ

RC
n rð Þ ¼

1; n ¼ 0ffiffiffi
2

p
cos πnr2

� �
; n N 0

(
ð8Þ

RS
n rð Þ ¼

ffiffiffi
2

p
sin πnr2

� �
; n N 0 ð9Þ

It is straightforward that the radial kernels in Eqs. (6)–(9) all satisfy
the orthogonality condition in Eq. (1) and that their corresponding
kernels are orthogonal over the unit disk. In addition, the radial kernels
of RHFM in Eq. (6) are actually equivalent to Rn rð Þ ¼ 1ffiffi

r
p ei2πnr in terms of

image representation, similar to the equivalence between different
forms of Fourier series (namely trigonometric and complex exponential
functions). The resemblance between the exponential form of RHFM's
radial kernels and PCET's radial kernels suggests that they are actually
special cases of a generic class of radial kernels that are defined based
on complex exponential functions. And each member of this class can
be used to define kernels that are orthogonal over the unit disk. Similar
observation also leads to generic classes of radial kernels defined based
on trigonometric functions.

The main contribution of this paper is a generic view on strategies
that were used to define orthogonal moments. This leads to the intro-
duction of four classes of radial kernels that correspond to four generic
sets of moments and take existing harmonic moments as special cases.
This paper proves theoretically that the generic sets of kernels are
complete in the Hilbert space of all square-integrable continuous
complex-valued functions over the unit disk. It also shows experimen-
tally that the proposed harmonic moments are superior to Jacobi
polynomial-based moments and are comparable to eigenfunction-
basedmoments in terms of representation capability and discrimination
power. It is also interesting to note that these generic harmonic
moments can be computed very quickly by exploiting the recurrence
relations among complex exponentials and trigonometric functions
[23]. The generalization by introducing a parameter in this paper is
similar to the generalization of the R-transform published recently [24].

The content of this paper is a comprehensive extension of the
researchwork presented previously in [25]. The next sectionwill derive
explicit form of generic classes of radial kernels defined based on com-
plex exponentials and trigonometric functions. The completeness of the
sets of orthogonal decomposing kernels is proven in Section 3, along
with some beneficial properties obtained from the generalization.
Section 4 is devoted to the stability of the numerical computation.
Experimental results in terms of representation capability and discrim-
ination power are given in Section 5. And conclusions are finally drawn
in Section 6.

2. Generic polar harmonic transforms

In order to formulate the generalization, assuming that theharmonic
radial kernels have the generic exponential form Rns rð Þ ¼ κ rð Þei2πnrs ,
where s ∈ ℝ and κ is a real functional of r. Then

∫1

0
Rns rð ÞR�

n0s rð Þrdr ¼ ∫1

0
κ2 rð Þei2πnr

s

e−i2πn0rs r dr:

Since drs = srs−1dr = srs−2rdr then

∫1

0
Rns rð ÞR�

n0s rð Þrdr ¼ ∫1

0

κ2 rð Þ
srs−2 e

i2πnrse−i2πn0rs drs:

By letting κ2 rð Þ
srs−2 ¼ const ¼ C;

∫1

0
Rns rð ÞR�

n0s rð Þrdr ¼ ∫1

0
Cei2πnr

s

e−i2πn0rs drs ¼ Cδnn0 :

In order to have orthonormality between kernels, it follows directly
from Eq. (1) that C ¼ 1

2π. Then κ rð Þ ¼ ffiffiffiffiffiffiffi
srs−2

2π

p
and Rns have the following

actual definition:

Rns rð Þ ¼ κ rð Þei2πnr
s

; ð10Þ
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