Tetrahedron Letters 55 (2014) 6671-6674

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A novel synthesis of new 2-aryl-6-(arylamino)-1*H*-imidazo [1,2-*b*]pyrazole-7-carbonitrile derivatives

Jabbar Khalafy*, Ahmad Poursattar Marjani, Fatemeh Salami

Department of Chemistry, Faculty of Science, Urmia University, Urmia 57154, Iran

ARTICLE INFO

ABSTRACT

Article history: Received 13 August 2014 Revised 1 October 2014 Accepted 9 October 2014 Available online 17 October 2014

Keywords: 1*H*-Imidazo[1,2-*b*]pyrazole Cyclocondensation

5-Amino-1*H*-pyrazoles α -Bromoacetophenones

The development of new methods for the synthesis of nitrogencontaining heterocycles is very important in organic chemistry. Among various biheterocyclic compounds, bicyclic imidazo[1,2*b*]pyrazoles exhibit a wide range of biological and pharmaceutical activities such as antitumor,¹⁻³ herbicidal,⁴ anti-inflammatory,⁵ antiviral,⁶ and antineoplastic⁷ activities.

Despite there being many literature reports on the synthesis of fused pyrazole derivatives, imidazopyrazoles have rarely been reported. However, there are a variety of methods for the synthesis of imidazo[1,2-*b*]pyrazoles,^{8–21} among which, many involve tedious and time-consuming multi-step procedures.

As part of our studies on the synthesis of tri- and tetracyclic heterocycles,^{22–25} herein we report a facile method for the synthesis of new derivatives of 1*H*-imidazo[1,2-*b*]pyrazole (**5a–h**) with possible pharmaceutical applications. The synthetic procedure involves the cyclocondensation of 5-amino-1-(2-oxo-2-arylethyl)-3-(arylamino)-1*H*-pyrazole-4-carbonitriles **4a–h**, which were prepared by the reaction of 5-amino-3-arylamino-1*H*-pyrazole-4-carbonitriles **3a–f** and α -bromoacetophenone derivative **2a,b** in the presence of K₂CO₃ using acetone as the solvent.

Bromination of acetophenones **1a,b** in Br₂/AcOH gave the corresponding α -bromoacetophenones **2a,b**.²⁶ Although the synthesis of 5-amino-3-arylamino-1*H*-pyrazole-4-carbonitrile **3a–f** derivatives has been reported,²⁷ we prepared these by a different method.²⁸ Reaction of α -bromoacetophenones **2a,b** with pyrazole derivatives **3a–f** gave the corresponding pyrazole intermediates (**4a–h**).

* Corresponding author. E-mail addresses: jkhalafi@yahoo.com, j.khalafi@urmia.ac.ir (J. Khalafy). Finally, cyclocondensation of compounds **4a**–**h** by refluxing in ethanol in the presence of hydrochloric acid gave the desired products **5a**–**h** in 78–93% yields (Scheme 1).

New 2-aryl-6-(arylamino)-1H-imidazo[1,2-b]pyrazole-7-carbonitriles are synthesized in good yields, via

cyclocondensation of 5-amino-1-(2-oxo-2-arylethyl)-3-(arylamino)-1H-pyrazole-4-carbonitriles, which

are prepared by the reaction of 5-amino-3-arylamino-1*H*-pyrazole-4-carbonitriles and α -bromoaceto-

phenone derivatives in the presence of K₂CO₃ using acetone as the solvent.

Eight examples of the conversion of α -bromoacetophenones **2a**,**b** into the corresponding substituted 5-amino-1-(2-oxo-2-arylethyl)-3-(arylamino)-1*H*-pyrazole-4-carbonitriles **4a**-**h** and 2-aryl-6-(arylamino)-1*H*-imidazo[1,2-*b*]pyrazole-7-carbonitiles **5a**-**h** along with reaction conditions, reaction times, melting points, and yields are listed in Tables 1 and 2, respectively.

© 2014 Elsevier Ltd. All rights reserved.

Table 1
Physical properties and reaction conditions for the synthesis of compounds 4a-h

Table 2 ortion violde and reaction times for th . 1 c Phy -h

Entry	Intermediate	Temp	Time (h)
1		Reflux	1
2		Reflux	1
3		rt	8
4	$Me \swarrow NH_CN$ $N_N \swarrow NH_2$ $\downarrow O$ OMe $4d$	rt	10
5	$ \begin{array}{c} $	rt	4
6	$O_2N - NH - CN - NH - CN - NH_2 - O - OMe - 4f$	rt	4.5
7	$ \begin{array}{c} $	rt	7
8	$ \begin{array}{c} \text{CI} & \text{Me} \\ \text{NH} & \text{CN} \\ \text{NN} & \text{NH}_2 \\ \text{O} \\ $	Reflux	2

Entry	Product	Time (h)	Mp (°C)	Yield (%
1		1.5	265–266 (dec.)	85
2		1	285–286 (dec.)	93
3	O ₂ N- NH CN N NH 5c	1	330 (dec.)	84
4	Me NH CN N NH Sd	1	280 (dec.)	78
5	Br NH N N NH OMe	0.5	268–270 (dec.)	90
6	Se O ₂ N - NH CN N, NH OMe 5f	0.75	275 (dec.)	88
7	Br NH CN NNH Sg	1	296–298 (dec.)	90
8	CI Me NH CN N NH Sh	2	249	83

The proposed mechanisms for the sequence are shown in Scheme 2. The first step involves the attack of the endocyclic nitrogen atom of 5-amino-3-arylamino-1H-pyrazole-4-carbonitrile **3a–f**, which is more nucleophilic due to the electron-withdrawing effect of the pyrazole ring, onto α -bromoacetophenone **2a**,**b** to

Download English Version:

https://daneshyari.com/en/article/5268790

Download Persian Version:

https://daneshyari.com/article/5268790

Daneshyari.com