Tetrahedron Letters 55 (2014) 6721-6725

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of cyclobuteniminium salts derived from aldo-keteniminium salts and study of their reactivity in Diels–Alder reaction

Alexandre Lumbroso^a, Saron Catak^b, Sarah Sulzer-Mossé^{a,*}, Alain De Mesmaeker^{a,*}

^a Syngenta Crop Protection AG, Crop Protection Research, Research Chemistry, Schaffhauserstrasse 101, CH-4332, Switzerland ^b Bogazici University, Department of Chemistry, Bebek, 34342 Istanbul, Turkey

ARTICLE INFO

Article history: Received 2 September 2014 Revised 30 September 2014 Accepted 3 October 2014 Available online 30 October 2014

Keywords: 'Aldo'-keteniminium salts Cyclobuteniminiums [2+2] cycloaddition Diels-Alder reaction Cyclobutenone DFT calculations

Since the first report by Ghosez in 1972,¹ the [2+2] cycloaddition reaction between a keteniminium salt 2 and an olefin has been intensively studied² and applied to the synthesis of various functionalized cyclobutanones, 3 $\gamma\text{-lactones}, ^4$ prostanoid scaffolds, 5 and natural products.⁶ While 'keto'-keteniminium salts **2** (\mathbb{R}^1 , $\mathbb{R}^2 \neq \mathbb{H}$) were prepared from the corresponding α -chloroenamines **1**¹ (pathway **A**, Scheme 1) or tertiary amides **3**⁷ (pathway **B**, Scheme 1), only the latter route was compatible with aldo-keteniminium salts 2 $(R^1 = H)$ owing to their very high reactivity.⁷ Indeed, they react faster with α -chloroenamine from which they are formed than with the olefin. Surprisingly, much less attention has been devoted to the [2+2] cycloaddition reaction with alkynes^{7,8} and even less with aldo-keteniminium salts 2.7,8b We recently demonstrated that building blocks 6 can be efficiently prepared via a one-pot [2+2]/ [4+2] sequence (Scheme 2).⁹ In this work, a broad range of novel cyclobuteniminium salts 4 were prepared by [2+2] cycloaddition reaction between keto-keteniminium salts $2(R^1, R^2 = alkyl, c-alkyl)$ and acetylene or 1-propyne. Iminium salts 4 were then used as dienophiles in Diels-Alder reactions with various functionalized dienes leading to 6 in good yields (Scheme 2). In order to extend

ABSTRACT

The synthesis of broad scope of novel monosubstituted cyclobuteniminium salts derived from aldo-keteniminium salts and acetylene or 1-propyne is described. The reactivity of cyclobuteniminium salts in Diels–Alder reactions has been studied in detail by DFT calculations and by performing competition reaction with cyclobutenone derivatives.

© 2014 Elsevier Ltd. All rights reserved.

the scope of our methodology, we report herein the synthesis of various cyclobuteniminium salts $\mathbf{4}$ (R¹ = H) derived from aldoketeniminium salts $\mathbf{2}$ as well as their use as dienophiles.

We started our investigation with *N*,*N*-dimethylpropanamide **3a** and acetylene as alkyne partner. Using the optimized conditions found for [2+2] cycloaddition with keto-keteniminium salts (*sym*-collidine, Tf₂O, and CH(D)Cl₃),⁷⁻⁹ strong precipitation occurred and a very complex mixture with only trace of [2+2] adduct **4a** was observed by ¹H NMR (Scheme 3).¹⁰ No improvement was obtained with higher dilution (*c* = 0.05 M) or using a more hindered base such as 2,6-di-tert-butylpyridine. Since a

CrossMark

^{*} Corresponding authors. Tel.: +41 628 660 233 (S.S.-M.), +41 628 660 268 (A.D.M.).

E-mail addresses: sarah.sulzer-mosse@syngenta.com (S. Sulzer-Mossé), alain. de_mesmaeker@syngenta.com (A. De Mesmaeker).

Scheme 2. One-pot [2+2]/[4+2] sequence involving cyclobuteniminium salts **4** as dienophiles.

precipitate was observed during the keteniminium formation, we wondered if increasing the lipophilicity of the nitrogen substituent would improve the solubility of the aldo-keteniminium salt **2a** in CDCl₃. While 5-membered ring **4b** (pyrrolidine) gave poor results, piperidine derivative **4c** was obtained cleanly without precipitation (Scheme 3). Although both heterocycles are expected to

improve the solubility, the piperidine moiety is geometrically more accommodating for the [2+2] cycloaddition transition state and hence, the formation of keteniminium salt. As seen in Figure 1, the pyrrolidine CH_2 groups are much closer to the attack trajectory and may have a negative impact on the formation of the cyclobuteniminium by sterically blocking the cycloaddition. Very complex mixtures were obtained using propanamides **3d–f** derived from morpholine, *cis*-2,6-dimethylmorpholine, and azepane, respectively (Scheme 3).

The scope and limitation of the [2+2] cycloaddition reaction were then investigated by using various tertiary amides bearing a piperidine moiety. Pleasingly, various alkyl substituents as well as a benzyl chain were well tolerated and the corresponding cyclobuteniminium salts **4g-j** were formed in moderate to good conversion (50–90%, Scheme 4). No isomerization of the double bond was observed by NMR whatever the nature of the side-chain (Scheme 5). DFT calculations show the high energetic demand of the isomerization, confirming its unlikelihood (Fig. 2). A single step proton transfer diagonally across the ring is not possible since the distance is 2.15 Å, hence the isomerization of the cyclobuteniminium double bond is a two step process, which involves two highly energetic transition states (ΔG^{\ddagger} is 65 and 73 kcal/mol, respectively) and an intermediate with extra strain. Although the isomerization

^a Conversion determined by ¹H NMR spectroscopy.

^b Conversion not determined.

^c Complex mixture with only traces of [2+2] cycloadduct **4** observed.

Scheme 3. Influence of the nitrogen substituent on the synthesis of the cyclobuteniminium salt 4.

Figure 1. Optimized geometries (M06-2X/6-31+G(d,p)) for cyclobuteniminium salts 4b and 4c (side view of piperidine and pyrrolidine).

Download English Version:

https://daneshyari.com/en/article/5268802

Download Persian Version:

https://daneshyari.com/article/5268802

Daneshyari.com