ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

N,N'-Dichlorobis(2,4,6-trichlorophenyl)urea (CC-2) as a new reagent for the synthesis of pyrimidone and pyrimidine derivatives via Biginelli reaction

G. B. Dharma Rao, B. N. Acharya, S. K. Verma, M. P. Kaushik*

Discovery Centre, Process Technology Development Division, Defence R&D Establishment, Jhansi Road, Gwalior 474002, MP, India

ARTICLE INFO

Article history:
Received 15 October 2010
Revised 6 December 2010
Accepted 9 December 2010
Available online 15 December 2010

Keywords:
Multi-component reactions
Biginelli reaction
N,N'-Dichlorobis(2,4,6-trichlorophenyl)urea
(CC-2)
Dihydropyrimidones
Benzimidazoles
Benzothiazoles

ABSTRACT

A simple and efficient method for the synthesis of 3,4-dihydropyrimidin-2-(1*H*)one and benzo[4,5]imidazo/thioazo[1,2-*a*]pyrimidine derivatives has been described using *N*,*N*'-dichlorobis(2,4,6-trichlorophenyl)urea (CC-2) as a new reagent. This method is found to be efficient and convenient for the synthesis of pyrimidone and pyrimidine derivatives.

© 2010 Elsevier Ltd. All rights reserved.

Multicomponent reactions have gained increasing attention for the synthesis of new heterocycles of medicinal importance. 1-3 Medicinal chemistry relies on robust, reliable reactions, facilitating the rapid development of new chemical entities (NCE's) available for bio-evaluation. In this area, Biginelli reaction is one of the most versatile reactions for the selective construction of heterocycles. The simple and straightforward procedure reported by Biginelli⁴ in 1893 involves a three component condensation reaction of β-ketoesters (1), arylaldehyde (2), and urea (3) to give 3,4-dihydropyrimidin-2-(1H)one (DHPMs, 4) (Scheme 1) in one-pot. The DHPMs derivatives have received considerable attention in recent years essentially because of their importance in medicinal chemistry.⁵⁻⁸ Due to the pharmacological importance, several protocols aimed to improve the Biginelli reaction have been reported using commercially available reagents. 9-15 However, most of reagents have been used for conventional reactants (e.g., aryl aldehyde, β-ketoesters, and urea/thiourea) only. The Biginelli reactions with alternative reactants¹⁶⁻²¹ other than urea have gained wide interest because of pharmaceutical significance. Recently, 2-aminobenzimidazoles/2-aminobenzothioazoles derivatives as alternates to urea have been reported.¹⁶ However, the reported methods of Biginelli reaction with these alternates suffer from several drawbacks, such as longer reaction time, harsh reaction conditions, difficulties in the isolation of products, formation of by-products,

and lower yields. Therefore, development of a new reagent with a wide range of structure diversity is needed. In continuation of our work on the synthesis of biologically active compounds^{15b} there was a need to synthesize a library of Biginelli products with urea and other substituents. We performed a number of reactions with various reported reagents (Table 1). However, most of the reagents were applicable only for a small range of reactants. So the development of a new reagent with wide applicability was required.

N,N'-Dichlorobis(2,4,6-trichlorophenyl)urea (CC-2),^{22,23} is a mild, stable, safe reagent and has high active chlorine content (14.54%). The reagent has been used for various organic transformations.^{24,25} CC-2 releases active chlorine and gets converted into an insoluble mass 1,3-bis(2,4,6-trichlorophenyl)urea. The insoluble mass can be easily separated by simple filtration and can be

Scheme 1. Biginelli reaction.

^{*} Corresponding author. Tel.: +91 751 2343972; fax: +91 751 2347542. E-mail address: mpkaushik@rediffmail.com (M.P. Kaushik).

Table 1Comparison of CC-2 with various reagents^{a,b}

Entry	Urea/alternate	Reagent	Time (h)	Yield (%) ^{c,ref}
1	Urea	CaCl ₂	2	98 ^{15a}
2	Urea	SiOCl ₂	3	90 ^{15b}
3	Urea	Ph₃P	10	58 ^{15c}
4	Urea	$Yb(OTf)_3$	6	96 ^{15d}
5	Urea	$Bi(NO_3)_3$	6	80 ^{15e}
6	Urea	CC-2	3	98
7	2-Aminobenzimidazole	$CaCl_2$	10	35
8	2-Aminobenzimidazole	SiOCl ₂	9	15
9	2-Aminobenzimidazole	Ph₃P	12	45
10	2-Aminobenzimidazole	$Yb(OTf)_3$	15	65
11	2-Aminobenzimidazole	$Bi(NO_3)_3$	15	60
12	2-Aminobenzimidazole	CC-2	5	82
13	2-Aminobenzothioazole	CaCl ₂	12	28
14	2-Aminobenzothioazole	SiOCl ₂	11	30
15	2-Aminobenzothioazole	Ph₃P	14	30
16	2-Aminobenzothioazole	$Yb(OTf)_3$	16	45
17	2-Aminobenzothioazole	$Bi(NO_3)_3$	16.5	40
18	2-Aminobenzothioazole	CC-2	6.5	75

^a Reaction conditions: 4-methoxy benzaldehyde (1.0 equiv), ethyl acetoacetate (1.0 equiv), urea/alternate (1.2 equiv) and CC-2 (0.3 equiv) in ethanol as solvent under reflux conditions.

converted back to CC-2 by the reaction with AcOH/Cl₂/NaOH.²⁶ Due to these advantages, we attempted the use of this reagent for the Biginelli reaction with urea and other alternatives. Herein, we describe *N*,*N*′-dichlorobis(2,4,6-trichlorophenyl)urea (CC-2) as a versatile reagent for Biginelli and modified Biginelli reactions.

In order to optimize the reaction conditions, 4-methoxy benzal-dehyde, ethyl acetoacetate and urea were taken as model reactants in ethanol under reflux conditions (Table 1, entry 6). It was observed that when aryl aldehydes, acetoacetate, urea, and CC-2 were used in the ratio of 1:1:1.2:0.3 in ethanol, it gave the best result. Additionally, we found that CC-2 was also compatible to carry out Biginelli reaction with other alternatives (5) to urea (Table 1, entries 12 and 18). The CC-2 was further compared with other reported reagents of the Biginelli reaction (Table 1) and it was revealed that only CC-2 gave the best results with urea and other substituents with respect to reaction time and yield.

The optimized reaction conditions were further extended to a wide range of reactants and the results have been summarized (Table 2). In addition, various pyrimidine derivatives were also synthesized using 2-aminobenzimidazole/ 2-aminobenzothioazole as alternatives to urea using CC-2 in a Biginelli like reaction (Table 3). The conversion was found to be modest with 2-aminobenzimidazole/benzothioazole. This might be due to lower conversion to the imine intermediate. The rate of formation of desired product was also found to be modest with substituted benzaldehydes especially at position 3 (Table 3, entries 7 and 10) and with higher aryl aldehydes (Table 3, entries 13 and 14). The modest yield might be because of steric hindrance in the formation of Schiff's base.

On the basis of the above observations and the literature reports, a plausible mechanism for the Biginelli reaction with CC-2 is depicted (Scheme 2). The first step of the reaction involves the electrophilic attack of positive chlorine on the imine formed by the reaction of urea and aldehyde. The activated imine (2) attacks on alkyl acetoacetate to give final product DHPMs. The nitronium ion formed on CC-2 after release of active chlorine picks up the proton from water and results in the formation of 1,3-bis(2,4,6-trichlorophenyl)urea. 22

In conclusion, we have demonstrated the application of CC-2 for the synthesis of diversified pyrimidones and pyrimidines by three

Table 2 Preparation of dihydropyrimidinones^a

Entry	R	R'	Χ	Yield ^b (%)	Mp (°C)	
					Observed	Reported ^{ref}
1	Н	C_2H_5	0	93	200-202	$202-204^{15a}$
2	$4-OCH_3$	C_2H_5	0	98	196-198	200-201 ^{15a}
3	4-0H	C_2H_5	0	88	200-202	$199-200^{15a}$
4	4-F	C_2H_5	0	85	180-182	182-184 ^{15b}
5	$4-N(CH_3)_2$	C_2H_5	0	91	228-230	$230-232^{15a}$
6	4-CH ₃	C_2H_5	S	82	194-196	192-194 ^{15c}
7	4-OH	CH ₃	0	84	242-244	$245-246^{13a}$
8	4-0CH ₃	CH_3	S	80	152-154	150-152 ^{13b}
9	4-NO ₂	CH_3	0	90	233-235	235-237 ^{15a}
10	4-F	CH_3	0	85	193-195	192-194 ^{13c}
11	4-OCH ₃	CH_3	0	86	194-196	192-194 ^{15a}
12	3-OCH ₃	CH ₃	0	80	204-206	207-208 ^{13d}
13	Н	C_2H_5	S	90	202-204	206-207 ^{15c}

See Ref. 27 for general procedure.

Table 3Biginelli reaction with 2-aminobenzimidazole/2-aminobenzothioazole^a

Entry	R	R [']	Y	Product	Time (h)	Yield ^{b,ref} (%)
1	4-OCH ₃	C_2H_5	N	6a	5	82 ¹⁶
2	4-OC ₂ H ₅ -	C_2H_5	N	6b	5	78
3	$4-C_2H_5-$	C_2H_5	N	6c	5.5	76 ¹⁶
4	4-Me ₂ CH-	C_2H_5	N	6d	6.5	72 ¹⁶
5	4-F-	C_2H_5	N	6e	6	68 ¹⁶
6	4-NO ₂ -	C_2H_5	N	6f	6	70 ¹⁶
7	3-NO ₂ -	CH_3	N	6g	7	68
8	4-0H-	C_2H_5	N	6h	6	71
9	4-0CH ₃	C_2H_5	S	6i	6.5	75 ¹⁶
10	3-OH-	C_2H_5	S	6j	6.5	66
11	4-Me ₂ N-	C_2H_5	S	6k	6.5	65
12	4-CF ₃ -	C_2H_5	S	61	8	58 ¹⁶
13	3,4,5-(OMe) ₃ -	CH ₃	N	6m	8	55
14	Indol-	CH ₃	N	6n	10	55

 $^{^{\}rm a}$ Reaction conditions: 1 (1.0 equiv), 2 (1.0 equiv), 5 (1.2 equiv) and CC-2 (0.3 equiv) using EtOH as solvent under reflux condition.

component coupling in one-pot. According to the conversion and reaction work-up, CC-2 was found to be an efficient and convenient reagent. The important advantages of this method are a simple work-up procedure, wide applicability and recyclability of the by-product formed during the reaction.

^b Reaction conditions for other reagents was same as in literature. ^{15a-e}

c Isolated vield.

 $^{^{\}rm a}$ Reaction conditions: 1 (1.0 equiv), 2 (1.0 equiv), 3 (1.2 equiv) and CC-2 (0.3 equiv) in refluxed ethanol for 3 h.

b Isolated yield.

b Isolated yield.

Download English Version:

https://daneshyari.com/en/article/5269327

Download Persian Version:

https://daneshyari.com/article/5269327

<u>Daneshyari.com</u>