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a b s t r a c t

In this paper, we focus on the problem of automatic noise parameter estimation for additive and multi-
plicative models and propose a simple and novel method to this end. Specifically we show that if the
image to work with has a sufficiently great amount of low-variability areas (which turns out to be a typ-
ical feature in most images), the variance of noise (if additive) can be estimated as the mode of the dis-
tribution of local variances in the image and the coefficient of variation of noise (if multiplicative) can be
estimated as the mode of the distribution of local estimates of the coefficient of variation. Additionally, a
model for the sample variance distribution for an image plus noise is proposed and studied. Experiments
show the goodness of the proposed method, specially in recursive or iterative filtering methods.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Noise estimation is a task of paramount importance in most im-
age restoration techniques. These techniques are usually based on
a degradation model where a noise-dependent-parameter is to be
estimated and it controls the amount of filtering to be executed.
For instance, the Wiener filter (in any of its multiple versions [1])
is built on the assumption that the image is corrupted by additive
random noise. Thus the parameter to be estimated is the noise
power spectrum or the variance of noise. If a Lee’s filter [2] for mul-
tiplicative noise is considered, then the coefficient of variation (CV)
of noise (i.e. the ratio of the standard deviation and the mean) is
the one needed. Regardless of the theoretical goodness of the dif-
ferent methods to restore an image, the key point is the estimation
of such noise parameters.

Noise estimation techniques in the spatial domain have been
classified as block based and filtering based methods [3]. The for-
mer deals with the local standard deviation of the image, which
is calculated using M � N blocks. In the latter, the image is filtered
by a low-pass filter and the noise is estimated using the standard
deviation of the difference between the original and the filtered
images. A number of involved variations based on these ap-
proaches have been reported, such as methods based on wavelets

[4,5], singular-value-decomposition [6], fuzzy logic [7] or median
absolute deviation [8]. Alternatively, fast and simple solutions have
also been reported [1]; for instance, in order to estimate the vari-
ance of additive noise, the minimum or the average of the locally
estimated variances are considered, even though it is known that
the former underestimates while the latter overestimates the pur-
sued value [9,10]. In other fields this problem has also been tack-
led; specifically, in the context of speech processing some
methods have being developed for time-varying background noise
estimation, as the ones analyzed by [11,12].

In this paper, we present a novel approach based on local sam-
ple statistics, specifically on the distribution of such statistics. We
will show that noise parameters may be accurately estimated
using the mode of the population of local estimations. The mode
is a fairly good estimator of the variance (if additive noise) or the
CV (if multiplicative) of noise when the image to work with has
a sufficiently great amount of low-variability areas so as to make
the local hypothesis of ‘‘constant plus noise” acceptable; fortu-
nately, this is not too a restrictive hypothesis for many real world
(untextured) images. We will also show that an accurate estima-
tion of noise is even more important when dealing with iterative
or recursive filtering schemes, in which the level of noise varies
from one iteration to another.

The paper is organized as follows: In Section 2 the additive and
multiplicative models of noise used in this paper are introduced.
Section 3 discusses the theory of the approach, Section 4 presents
results and compares the methodology to other estimation proce-
dures. Conclusions are summarized in Section 5. Some appendices
have been added to ease the paper readability.
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2. Noise models and estimation

In this paper we will focus on images degraded by either addi-
tive or multiplicative noise. For the former we will consider the fol-
lowing model

gi;j ¼ fi;j þ ni;j ð1Þ

where fi;j is the intensity at pixel ði; jÞ in the original image, gi;j is the
intensity at pixel ði; jÞ in the degraded image and ni;j is a Gaussian
noise sequence with zero mean and Varðni;jÞ ¼ r2

n constant through-
out the image. Assuming that the noise and the original image are
independent, the variance of the degraded image can be written [1]

r2
gi;j
¼ r2

fi;j
þ r2

n ð2Þ

being both r2
gi;j

and r2
fi;j

local variances.
For the multiplicative noise the following the model will be

used

gi;j ¼ fi;jui;j ð3Þ

where ui;j is the multiplicative noise with mean and variance con-
stant throughout the image and respectively denoted by E½ui;j� ¼ �u
and Varðui;jÞ ¼ r2

u. The (square) coefficient of variation (CV) of noise
will be

C2
u ¼

r2
u

�u2 ð4Þ

and it is also constant throughout the image. The local (square) CV
of the degraded image is then defined as

C2
i;j ¼

r2
gi;j

�g2
i;j

ð5Þ

where �gi;j is the local mean of the degraded image. This equation
can be rewritten as [13,14]

C2
i;j ¼

r2
fi;j

�f 2
i;j

ð1þ C2
uÞ þ C2

u ð6Þ

According to Eq. (2), if at some region the equality r2
fi;j
¼ 0 holds, i.e.,

the image is locally constant (plus noise), then it is clear that

r2
gi;j
¼ r2

n ð7Þ

Therefore, within a uniform area (in terms of the signal content) the
variance of the degraded image equals the variance of noise. The
same reasoning can be applied to Eq. (6) for multiplicative noise,
i.e., within a homogeneous area

C2
i;j ¼ C2

u ð8Þ

Although this reasoning is well-known, some consequences should
be taken into account (we will now focus on the additive case; the
reasoning for the multiplicative case is similar, by replacing the var-
iance with the CV): specifically, according to the previous state-
ment, one straightforward way to estimate r2

n is to calculate the
variance within homogeneous regions [15,16], where the variance
of the original image is close to zero, so Eqs. (7) and (8) hold. This
method has the drawback of requiring either some sort of auto-
matic procedure or manual selection to detect these homogeneous
regions. It is also highly sensitive to errors, outliers and
inhomogeneities.

Alternatively, if estimations were totally accurate, and accord-
ing to Eq. (2), then r2

n should be

r̂2
n ¼ r2

min ¼min
i;j
fr2

gi;j
g ð9Þ

However, this estimate is, in practice, biased towards zero due to
the sensitivity of the min operator to outliers and the real distribu-

tion of the local variance estimator itself; as a result it frequently
underestimates the real value of r2

n. Some authors use the average
instead

r̂2
n ¼ r2

ave ¼
1
N

X
i;j

r2
gi;j

ð10Þ

(with N the number of points in the summation) but this method
tends, conversely, to overestimate.

A walk-around has been proposed elsewhere [9], where some
intermediate value is calculated by introducing a free parameter
k ranging within the interval (0,1). The estimator is then

r̂2
n ¼ kr2

min þ ð1� kÞr2
ave: ð11Þ

Another common noise estimator in video and speech processing is
[4]

r̂n ¼ rMAD ¼ 1:4826�MADðyH
i;jÞ ð12Þ

which assumes the noise standard deviation as proportional to the
median absolute deviation (MAD) of the wavelet coefficients in the
highest frequency subband, yH

i;j. The MAD is defined (for some data-
set gi)

MAD ¼ medianiðjjgi �mediankðgkÞjjÞ

In [8], the authors propose a similar estimator for the CV

cC2
u ¼

1:4826ffiffiffi
2
p �MADðr log gi;jÞ ð13Þ

As it has been stated in the introduction, more complex methods
have also been reported in order to estimate noise statistics. These
methods are not only based on the local variance r2

gi;j
but on other

parameters of the image. See for example [3,5–7,17,18]. In this pa-
per a novel simple procedure is introduced.

3. Noise estimation

Our aim is to find a fast, simple and reliable method to estimate
r2

n when additive Gaussian Noise is considered or C2
u for the multi-

plicative case. Let us take a previous practical view of the problem
of estimation. We will focus first on the case of additive noise.
According to Eq. (2) the theoretical effect of adding Gaussian noise
to an image is that its local variance increases an amount r2

n. In
Fig. 1 we show the reference image that we will use for this exper-
iment, and the same image with additive Gaussian noise with zero
mean and rn ¼ 20 (for an image in the range [0,255]).

The (normalized) distribution of the local variance of the image
is estimated and shown in Fig. 2a. According to Eq. (2) one would
expect that the distribution of the noise image were just this distri-
bution shifted to the right an amount r2

n , as shown in Fig. 2b. As
previously stated, the straightforward estimator would be the min-
imum of the distribution, as in Eq. (9). However, as the sampling
estimation of the local variance is used, this estimator will also
have a variance itself [19], and its distribution differs from that

Fig. 1. Real image used for the experiments. (a) Original image (256 gray levels). (b)
Image with Gaussian noise with 0 mean and rn ¼ 20.

S. Aja-Fernández et al. / Image and Vision Computing 27 (2009) 756–770 757



Download	English	Version:

https://daneshyari.com/en/article/526965

Download	Persian	Version:

https://daneshyari.com/article/526965

Daneshyari.com

https://daneshyari.com/en/article/526965
https://daneshyari.com/article/526965
https://daneshyari.com/

