Tetrahedron Letters 55 (2014) 6220-6223

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Reactions of silyl nitronates with dimethylformamide dimethyl acetal as a new general procedure for the synthesis of 2-nitroenamines

# Alexander S. Shved <sup>a,b</sup>, Andrey A. Tabolin <sup>b,\*</sup>, Yulia A. Khomutova <sup>b</sup>, Sema L. Ioffe <sup>b</sup>

ABSTRACT

discussed.

<sup>a</sup> Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation <sup>b</sup> N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation

## ARTICLE INFO

Article history: Received 26 July 2014 Revised 29 August 2014 Accepted 11 September 2014 Available online 21 September 2014

Keywords: Aliphatic nitro compounds Push-pull alkenes Silyl nitronates Nitroenamines Amide acetals

2-Nitroenamines serve as versatile intermediates in organic synthesis (Scheme 1).<sup>1-3</sup> Some bioactive compounds including the anti-ulcer drugs Nizatidine<sup>4</sup> and Ranitidine,<sup>5</sup> as well as an insecticide family<sup>6</sup> possess a nitroenamine motif. Nucleophilic substitution of dialkylamino groups with activated arenes or aromatic heterocycles,<sup>7</sup> enolates,<sup>8</sup> amines,<sup>9</sup> hydroxide<sup>10</sup> and Grignard reagents<sup>11</sup> gives rise to various nitroalkene derivatives. As such, nitroenamines have been used as convenient precursors for 1,2-aminoalcohols, which have been employed in total syntheses of several natural compounds, such as (–)-detoxinine,<sup>3a</sup> (+)-castano-spermine<sup>3b</sup> and (–)-rosmarinecine.<sup>3c</sup> Recently, an asymmetric synthesis of 1,2-diamines based on organocatalytic addition of aldehydes to 2-nitroenamines was reported.<sup>2</sup>

Several types of nitroenamines can be outlined depending on their substitution pattern.  $\beta$ -Substituted species **1** can be readily synthesized by amination of the corresponding  $\alpha$ -nitroketones [Scheme 2, (1)].<sup>12</sup> In contrast, the synthesis of  $\beta$ -unsubstituted nitroenamines **1** (R<sup>2</sup> = H) requires other paths, since 2-nitroaldehydes are unstable and cannot be isolated.<sup>9</sup> General methods for the synthesis of 2-nitroenamines **1** (R<sup>2</sup> = H) employ primary aliphatic nitro compounds **2** (ANC) as precursors [Scheme 2, (2)].<sup>13–19</sup> However, for aliphatic substituents R<sup>1</sup> (R<sup>1</sup> = Me, Et, etc.) the yields decrease dramatically and an excess of the ANC is necessary.<sup>13–15</sup> This makes these procedures only applicable to the simplest and commercially available ANCs (nitromethane,<sup>14</sup> nitroethane<sup>15</sup> and so forth), or activated ANCs ( $\alpha$ -nitroketones<sup>16</sup> or nitroacetic acid esters<sup>13</sup>). Considering the aforementioned facts, an efficient procedure employing functionalized and inactivated ANCs is needed.

## Synthesis of nitroenamines 1

Silyl nitronates obtained in situ from the corresponding aliphatic nitro compounds react with dimethyl-

formamide dimethyl acetal giving 2-nitroenamines in moderate to good yields. The reaction pathway is

We assumed that higher nitroalkanes could be involved in nitroenamine synthesis by employing silyl nitronates **3**. The latter have proved themselves as useful synthetic equivalents of ANCs **2**, which react with greater selectivity under milder conditions.<sup>20</sup> Employment of a silyl group avoids the occurrence of mobile protons, thus making the crucial C–C bond forming step **3**  $\rightarrow$  **4** irreversible (Table 1).<sup>21</sup> The presented strategy for the synthesis of nitroenamines **1** involves three steps. In the first step (i) ANC **2** is converted into silyl nitronate **3** via a literature procedure,<sup>22</sup> followed by treatment at  $-78 \,^{\circ}$ C with dimethylformamide dimethyl acetal (DMFDMA) to give intermediate hemiaminal **4** (step ii). Upon warming, the latter undergoes elimination of methanol leading to the target nitroenamine **1** (step iii).<sup>23</sup>

The data presented in Table 1 reveal that high yields can be achieved for a wide variety of nitroenamines **1**. In most cases there was no need to exceed a stoichiometric amount of reagents. Separation of target **1** from the by-product salt  $[DBUH]^+CI^-$  was accomplished by ether extraction (Et<sub>2</sub>O or *t*-BuOMe). For large





© 2014 Elsevier Ltd. All rights reserved.



<sup>\*</sup> Corresponding author. Tel.: +7 499 135 5329; fax: +7 499 135 5328. *E-mail address:* tabolin87@mail.ru (A.A. Tabolin).



Scheme 1. Nitroenamines as biologically active compounds and useful intermediates in organic syntheses.



Scheme 2. Existing approaches for the synthesis of β-nitroenamines. Reagents and conditions: X = OR; (a) Me<sub>2</sub>NCH(OMe)<sub>2</sub>, Temp (°C) (Refs. 16,17); (b) amine, HC(OR)<sub>3</sub>, p-TsOH, Temp (°C) (Refs. 14,15,18). X = SR: (c) [Me<sub>2</sub>NCHSMe]<sup>+</sup>I<sup>-</sup>, KF, TEBAC, CH<sub>2</sub>Cl<sub>2</sub>, rt (Ref. 19).

scale preparations (36-50 mmol of ANC 2), Soxhlet extraction was used. It is worthy of note that purification of products 1 via aqueous extraction or column chromatography was not efficient and led to substantial loss of the target enamines 1 (e.g., see Table 1, entry 12), due to their high polarity and hydrolytic lability.<sup>9</sup> If the nitroenamine possesses a high melting point, the separation of 1 and 2 was easily performed by recrystallization. Otherwise, full conversion of the initial ANC 2 was preferable.

The structures of the obtained enamines **1** were supported by <sup>1</sup>H and <sup>13</sup>C NMR data, as well as by elemental analysis or HRMS data. All nitroenamines 1 in chloroform solutions were observed as (E)-isomers (NOESY data). This is in accordance with known rules for *E*/*Z*-isomerism in similar substances.<sup>9,24</sup>

For the synthesis of enamines 1 more stable TBS-nitronates can also be used (Table 1; cf. entries 1 and 2). However, branching at the  $\beta$ -position of the carbon skeleton in ANC **2** (substrates **2d,e,k**) significantly diminished the conversion of ANC 2 and consequently the yield of products 1; for example, for ANC 2d (Table 1, entry 6)

#### Table 1

1 20

3

Synthesis of nitroenamines 1 via silylation of ANCs 2



| 4              | 2c | CH <sub>2</sub> CH(Me)CO <sub>2</sub> Me | 85                    | 90  |  |
|----------------|----|------------------------------------------|-----------------------|-----|--|
| 5              | 2d | CH(Me)CH <sub>2</sub> CO <sub>2</sub> Me | 68                    | 100 |  |
| 6 <sup>d</sup> | 2d | CH(Me)CH <sub>2</sub> CO <sub>2</sub> Me | n/d <sup>e</sup>      | 40  |  |
| 7              | 2e | 1-Cyclohexenyl                           | 45                    | 65  |  |
| 8              | 2f | Н                                        | 75                    | n/d |  |
| 9              | 2g | Me                                       | 95                    | n/d |  |
| 10             | 2h | Et                                       | 90                    | 100 |  |
| 11             | 2i | Ph                                       | 78                    | 100 |  |
| 12             | 2j | CH <sub>2</sub> Ph                       | 80 (35 <sup>f</sup> ) | 96  |  |
| 13             | 2k | CH(Ph)CH <sub>2</sub> CO <sub>2</sub> Et | 41                    | n/d |  |
| 14             | 21 | CH <sub>2</sub> CH <sub>2</sub> Ph       | 75                    | 100 |  |

i: DBU (1.05 equiv), TMSCl (1.1 equiv),  $-15 \circ C \rightarrow rt$ , 40 min.

ii: DMFDMA (1.1 equiv), -78 °C, 1 h (for 1k: 2.2 equiv).

iii:  $-78 \text{ °C} \rightarrow \text{rt}$ , overnight [for **1d**: DBU (1 equiv), TMSCl (1 equiv), then  $-78 \text{ °C} \rightarrow \text{rt}$ , overnight].

Isolated vield.

ь Determined by integration of the <sup>1</sup>H NMR spectra.

TBSCI was used instead of TMSCI.

<sup>d</sup> Without addition of DBU/TMSCl at step iii.

e Not determined.

<sup>f</sup> Yield after purification by column chromatography on alumina.



Scheme 3. Reaction of isolated silyl nitronates 3 and DMFDMA.

the conversion was 40%.<sup>25</sup> Fortunately, the addition of DBU (10 mol %) to the reaction mixture increased the conversion of 2d from 40% to 90%. An even better effect was achieved by the addition of 1 equiv of a mixture of DBU/TMSCl, capable of trapping the methanol. Thus the conversion of ANC 2d was increased to 100% (Table 1, cf. entries 5 and 6). However, for ANC 2k, this procedure was not successful. For the transformation of  $2k \rightarrow 1k$  the use of a twofold excess of DMFDMA was the method of choice (see Table 1, entry 13).

### Studies on the mechanism

It was interesting to elucidate in more detail the mechanism of nitroenamine 1 formation. To the best of our knowledge, there is only one known example of a similar process [coupling of silyl nitronates with a hemiaminal (TMSOCH<sub>2</sub>NMe<sub>2</sub>)].<sup>26</sup> It turned out that coupling of DMFDMA with isolated silvl nitronates 3h or 3'h [simulation of step (ii), see Table 1] did not lead to enamine 1h, while hemiaminal 4h was observed as the major product (Scheme 3).

Download English Version:

# https://daneshyari.com/en/article/5269789

Download Persian Version:

https://daneshyari.com/article/5269789

Daneshyari.com