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Aircraft recognition in infrared image using wavelet moment invariants
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a b s t r a c t

Automatic Target Recognition (ATR) of infrared object has been taking a great interest to the researchers
in recent years. ATR requires invariance of high cognition accuracy in translation, scaling and orientation,
but classification of two-dimensional (2D) shapes despite of their position, size and orientation in infra-
red image remains a difficult problem. In this paper, a feature extraction method is proposed using Wave-
let Moment Invariants (WMI). The very similar objects can be classified correctly by virtue of the wavelet
moment with its multi-resolution properties. Compared with some other geometry moments, the classi-
fication rate and the recognition efficiency are improved with wavelet moments. As different wavelet
basis will have different impacts to wavelet moment, it affects the efficiency of classification. Some
important properties such as orthonomality, supported length and vanishing moments which affect
the performance of wavelet moment are discussed in this paper. Through experimental analysis, a con-
clusion is obtained that symmetry, compactly supported wavelet has more high-performance, and using
wavelet function with proper vanishing moments could effectively improve the efficiency of
classification.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

ATR in infrared image has been taking a great interest to the
researchers in recent years. Since there are many applications of
ATR, the classification rate and the recognition efficiency become
critical factors to these applications. As some aircrafts are much
alike, it is very hard for the computer to classify them correctly.
Moment based invariants, which provide translation, scale and
rotation invariance of 2D shapes, have been widely used over re-
cent years as the feature vectors for image analysis in many areas,
as far as aircraft recognition area is concerned, it uses moment
invariant features of the aircraft silhouette and silhouette border.
In 1961 Hu proposed the concept of moment invariant [1], Li de-
rived a method for constructing an arbitrary order invariant using
Fourier–Mellin transform and pointed out that Hu-moment is a
special example of it [2]. Teague suggested orthogonal moments
be constructed by mean of using orthogonal polynomial to over-
come the shortcomings of Hu-moment which includes a large
number of redundant information, and Zernike-moment invariant
[3] is one of the orthogonal moment invariant [4]. But such mo-
ment invariants mentioned above are calculated over the whole
image space, as a result the feature vectors abstracted are global
features which is not conducive to classification. In order to over-
come these disadvantages, Shen and Horace put forward a proposal

that using wavelet transform to construct wavelet moment so that
the spatially and local features could be obtained simultaneously
[5], and higher classification rate would be received in classifying
similar shapes with slight difference.

Previous works have been done using moment invariant by
many researchers for aircraft recognition. Dudani and Breeding uti-
lize moment invariants to identify aircraft [6], and some research-
ers use curve contour for abstracting features [7,8], some research
is based on shape matching of 3-D objects [9,10]. However it does
not have a multi-resolution representation. We investigate the per-
formance of wavelet moment invariants for classifying different
aircrafts.

In this study, wavelet moment with its multi-resolution proper-
ties has been used for feature extraction of the aircraft in infrared
image. We use radial wavelet transform to the image, and a set of
discriminative wavelet moment is obtained. Also the Mallat pyra-
mid algorithm [11] is used to accelerate the whole process.

2. Mathematical derivation of moment invariant

Let f(x,y) represent the density distribution function of a 2D im-
age in Cartesian coordinates, and the geometric moment of (p + q)
order of it is defined as:

Mpq ¼
ZZ

f ðx; yÞxpyq dxdy ð1Þ

where p, q = 0, 1, 2 . . . and f(x,y) is the gray value of the image at x
and y location, and the central moment is as follows:
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lpq ¼
ZZ

f ðx� x0; y� y0Þðx� x0Þpðy� y0Þ
q dxdy ð2Þ

where x0 = M10/M00 and y0 = M01/M00 are the gravity center of the
image. The complex moment is given by:

Fpq ¼
ZZ
ðxþ iyÞpðx� iyÞqf ðx; yÞdxdy ð3Þ

Let x = r cosh, y = r sinh and substitute them into (3), we get

Fpq ¼
ZZ
ðxþ iyÞpðx� iyÞqf ðx; yÞdxdy

ZZ
rpþq eiðp�qÞhf ðr; hÞr drdh ð4Þ

ZZ
ðr cos hþ tr sin hÞpðr cos h� tr sin hÞqf ðr; hÞr drdh

Let p + q = m, q � p = n, (4) can be written as:

Fmn ¼
ZZ

rm e�inhf ðr; hÞr drdh

Of cause it can be rewritten as:

Fpq ¼
ZZ

rp e�iqhf ðr; hÞr drdh

By substituting rp with gp(r) into above equation, we obtain the gen-
eral expression of moments:

Fpq ¼
ZZ

gpðrÞe�iqhf ðr; hÞr drdh ð5Þ

where gp(r) represents the radial part and e�iqh represents the angu-
lar part of the kernel function. Hu-moment, Li-moment and Zer-
nike-moment can be achieved by using different gp(r) and e�iqh.

In order to normalize the image, we move the origin to the mass
center through fT(x,y) = f(x � x0, y � y0), therefore fT(x,y) have the
quality of translation invariant. Define scaling factor

a ¼
ffiffiffiffiffiffiffiffiffiffi
M00

area

r

where area is a constant which equals to the expected image size.
So we get the image which has the quality of translation and scaling
invariant by fN(x,y) = f((x � x0)/a, (y � y0)/a). After that, we trans-
form fN(x,y) from Cartesian coordinate to polar coordinates, ex-
pressed as fN(r,h).

Suppose f 0Nðr; hÞ represent fN(r,h) rotated by o degree and is de-
fined as:

f 0Nðr; hÞ ¼ fNðr; hþ oÞ

By substituting above equation into (5), we have

F 0pq ¼
ZZ

f 0Nðr; hÞgðrÞe�iqhr drdh ¼
ZZ

fNðr; hþ oÞgðrÞe�iqhr drdh

¼ eiqh

ZZ
fNðr; htÞgpðrÞe�iqht r drdht ¼ eiqhFpq

Eliminating eiqo using some mathematical operation, moments of
translation, scaling and orientation invariant could be obtained.
For example, it is obviously that kFpqk is an invariant, the combined
moments are also rotation invariant such as Fp1qF�p2q where F�p2q is
the conjugate of Fp2q [12].

3. Translation, scaling and orientation normalization

In traditional way, the scaling factor of the present aircraft size
compared with the expected size is as follows:

a ¼
ffiffiffiffiffiffiffiffiffiffi
M00

area

r

where area is a constant which represents the expected size. In or-
der to facilitate normalizing in polar coordinates, here we normalize
the image by utilizing the distance to the mass center (x0,y0).The
scaling factor a is defined as:

a ¼
max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ

2
q

N
ð6Þ

where N is the normalized radius of the image with its value we set
64. So we obtain the expected image though changing the coordi-
nate and size of the present image as follows:

X ¼ ðx� x0Þ=a
Y ¼ ðy� y0Þ=a

�
ð7Þ

we use bilinear interpolation to complete the above process. Fig. 1
shows the original image and the normalized image.

After that, let f(h,r) represents the corresponding form in polar
coordinates of f(x,y), and is defined as:

x ¼ r cosðhÞ
y ¼ r sinðhÞ

�
ð8Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ

2
q

h ¼ arctan ðy�y0Þ
ðx�x0Þ

8<
:
f ðr cos h; r sin hÞ ¼ f ðx; yÞ 0 6 r 6 R; 0 6 h 6 2p

R ¼max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ

2
q� �

In our operation, we take (x0,y0) as the center with
ðri ¼ i�R

N i ¼ 0;1; . . . ;N � 1Þ as radiuses and draw concentric cir-
cles, and take horizontal direction as origination with 2p/M as step
and go on angle splitting. Then discrete grids (ri,hi) in polar coordi-
nates have obtained, where ðhi ¼ j�2p

M j ¼ 0;1; . . . ;M � 1Þ, M and N
are radial and directional discrimination indices, respectively. After
that, we calculate the average gray value of the area Sij =
{(ri,hj)jri 6 r < ri+1, hj 6 h < hj+1} in which the corresponding pixels
in Cartesian coordinates are, and give this value to the f(ri,hj).

For digital image, it is somewhat difficult to transform the im-
age from Cartesian coordinates to polar coordinates, for the reason
that the size of single pixel in both coordinates is DxDy and riDrDh,
respectively, as is show in Fig. 2. To keep the accuracy of the trans-
formation, we have an expansion as large as 64 times of the origi-
nal image, which equals that we divide each pixel into 64 sub-
pixels. Every sub-pixel can be mapped to the only grid in polar
coordinates. This ensures us that we can get a sufficient accuracy.

After that, the normalized image in polar coordinates has been
obtained. Fig. 3 shows the normalized images. Image (a) is the im-
age which image (c) rotates right by 90�. It is obviously that (b) and
(d) do have the quality of being periodic.

Fig. 1. Images before and after translation, scaling normalization, (a) original
image, (b) normalized image.
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