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Within the general one-dimensional theory of nonlinear elasticity we analyze the elasticity of biopolymer
filaments. The approach adopted is purely mechanical but is reconciled with statistical physics
approaches and allows for a proper formulation of boundary-value problems. By specializing the general
framework we obtain force-extension relations for inextensible filaments and show how previous work
on the biophysics of filaments fits within the framework. On the other hand, within the same framework,
the theory of extensible filaments, which is appropriate for semi-flexible filaments such as F-actin,
enables us to fit representative F-actin data. The specific formulas derived are relatively simple and
the parameters involved have direct mechanical interpretations and are immediately related to the fila-
ment properties, including the initial end-to-end length, contour length and persistence length.
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1. Introduction

In a recent paper [1] we developed a general two-dimensional
framework based on the nonlinear elasticity of one-dimensional
continua, incorporating both bending and stretching, for analyzing
the elastic behaviour of biopolymer filaments under tension. The
general approach adopted embraces the treatment of both flexible
and semi-flexible filaments and is able to accommodate different
degrees of approximation. A key ingredient in the theory is inclu-
sion of a body force term in the equilibrium equation, which in
the mechanical setting plays the role of the thermal fluctuations
used in the statistical physics approach and enables an inconsis-
tency in the biophysics literature to be reconciled within the con-
text of a mechanical boundary-value problem. Indeed, the body
force term was found to be essential for obtaining non-trivial solu-
tions of the governing equations and boundary conditions for fila-
ments under tension. Without a body force term mechanical
equilibrium cannot be satisfied nontrivially, and therefore the ef-
fect of thermal fluctuations on mechanical equilibrium cannot be
captured. This general nonlinear one-dimensional theory therefore
provides a consistent alternative approach for describing the elas-
ticity of biopolymer filaments.

In the present paper, for simplicity, the theory is illustrated sim-
ply for the case of small lateral displacements, for which the equa-
tion governing the lateral displacement can be linearized. This
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approach allows us to obtain explicit formulas in the form of
extension-force relationships that include dependence on filament
parameters, in particular on the initial end-to-end distance of the
filament, and its contour and persistence lengths. These formulas
are nonlinear even though the governing equations are linear. By
considering inextensible (entropic) versions of the model, we show
also how the theory relates to specific models obtained in the bio-
physics literature. Then, for the extensible (enthalpic) version of
the theory we are able to fit force-extension data for semi-flexible
filaments, specifically for F-actin.

The general (two-dimensional) theory, however, is applicable to
the fully nonlinear case, but then explicit formulas are not in gen-
eral obtainable. This is why we restrict attention to situations in
which the lateral displacement of the filament is small so that
the mechanical equilibrium equations can be linearized, which is
appropriate for semi-flexible biopolymers or for flexible polymers
in the high force domain. To capture the force-extension behaviour
of flexible biopolymers in general (e.g., DNA), however, requires
adoption of the nonlinear theory, and consequently can only be
done numerically, which is not our present interest.

A brief outline of the content of the paper is as follows. In
Section 2 we provide a summary of the equations and the consti-
tutive law for an inextensible elastic filament and obtain the gen-
eral solution of the linearized equilibrium equation for a given
general form of the body force (written as a Fourier expansion),
and we show, from a purely mechanical standpoint, how the
theories of MacKintosh [2] and Blundell and Terentjev [3], which
were derived for semi-flexible filaments, relate to our general
framework.
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In Section 3 we discuss briefly the case of an extensible filament
and we use a particular model within our general framework to fit
a set of data on F-actin provided by Liu and Pollack [4]. It then be-
comes clear that no inextensible model, such as that of MacKintosh
[2] or Blundell and Terentjev [3], can fit these data. However, the
paper of Blundell and Terentjev [3] also includes an extensible
model, but we found that an important formula in their paper is
incorrect and could not be used to fit the data.

We emphasize that the approach adopted here is purely
mechanical with the aim of establishing formulas relating force
to extension in biopolymer filaments. Within a fairly general the-
ory the elastic behaviour of a range of biopolymer filaments can
be captured in terms of their contour length, persistence length
and the ambient temperature. A formula for the end-to-end dis-
tance in the absence of applied tension is also obtained in terms
of the contour length and persistence length when the linearized
equilibrium equation is adopted.

The choice of F-actin to illustrate the approach is partly be-
cause of the availability of suitable data, and because the theory
when specialized to the case of small lateral displacements can
be used to obtain exact formulas. The nonlinear form of the the-
ory can also be used to model the elastic behaviour of other bio-
polymer filaments, including the effects of domain unfolding or
overstretching.

In a short Appendix we discuss the use of the Gibbs free-energy
function as a means of deriving extension—force relations.

2. Elasticity of an inextensible biopolymer filament

Here we treat a single filament as a one-dimensional nonlinear
continuum. In particular, we incorporate both bending and stretch-
ing elasticity. By introducing the relevant kinematics and postulat-
ing constitutive laws we derive the equilibrium equation for a
single filament explicitly.

2.1. Kinematics

Consider a single inextensible biopolymer filament of length [
which is curved due to the effect of thermal fluctuations in the ab-
sence of any applied load. We denote by r, the end-to-end distance
of the filament.

For simplicity we confine attention to two dimensions so that
the curved filament lies in the plane defined by the unit vectors
e; and e,, with corresponding coordinates x; and x,. One end of
the filament is located at a fixed origin, x; =0, while the other
end is located on the x; axis, and the arc length measured from
the origin is denoted by s. A tensile force f is applied at the right-
hand end in the x; direction, as a result of which the end-to-end
distance ry becomes r; see Fig. 1.

With reference to Fig. 1 we have:

T(s) = cos 0(s)ey + sin 0(s)ey,

v(s) = —sin 0(s)e; + cos 6(s)ey,

(1)
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where 7 is the unit tangent to the filament, v is the unit normal in
the sense shown in Fig. 1, 6 is the angle between 7 and the e, axis,
and u = x; is the lateral displacement from the e; axis, with:

u'(s) = sin 6, (2)

where the prime denotes the derivative with respect to the param-
eter s. Then:

K(s) =0'(s), 3)

where « is the curvature, which may take different signs for differ-
ent values of s.

We have chosen the tensile force f along the end-to-end direc-
tion, as is usually done in the literature. More generally it is possi-
ble to include a transverse force but for equilibrium this must be
balanced by a moment, as is also the case if f is not aligned with
the end-to-end direction. A three-dimensional setting would also
require the consideration of torsional couples; however, accommo-
dation of such details is possible but it makes the analysis signifi-
cantly more complicated and does not affect the main features of
our proposed framework.

T'(s) = K(s)v(s),

2.2. Equilibrium equations

The filament is assumed to be “unshearable” as well as inexten-
sible. On the filament cross-section at location s there act tangen-
tial and normal components of the resultant contact force, say p,
and a resultant contact couple, say m, such that:

p=tt+ny, m=mtxyv, (4)

where t, the tension in the tangential direction, and n, the normal
component, are Lagrange multipliers required to prevent extension
and through-thickness shearing, respectively, while m is the bend-
ing moment in the filament (for detailed background on the
mechanics of rods and beams, see Ref. [5]). Note that ¢, n and m de-
pend, in general, on s. We recall from [1] that if there is no body
force, then in the absence of the applied axial tension the filament
is necessarily straight, and hence the effect of thermal fluctuations
on the equation that governs mechanical equilibrium is equivalent
to the effect of a transverse body force distribution. Thus, to ensure
that the statistical physics approach is consistent with the equa-
tions of mechanics, we include a body force term. This is denoted
by b, defined per unit length and also dependent on s. Therefore,
from the purely mechanical point of view the body force can be
thought of as the driving mechanism for the thermal fluctuations.

For the two-dimensional problem the equilibrium of the fila-
ment is governed by two translational and one rotational balance
equations of the form [1]:

t=fcosf—csinf, n=—fsin0—ccosb, (5)
m+n=0, (6)
where the vector relation c¢/(s) =b has been used for convenience,
and, without loss of generality, it suffices to take c(s) = c(s)e,. Note

that here we are referring to mechanical equilibrium at a certain
time; hence, the balance equations hold for a snapshot in time.

T

Fig. 1. An inextensible elastic filament with length I and arc length s subject to a tensile force f applied along e, at x; = r, where r is the end-to-end distance. The unit tangent
and the normal vector to the filament are 7 and v, respectively, while T makes an angle 6 with the e; axis.
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