Tetrahedron Letters 55 (2014) 3184-3188

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Palladium-catalyzed decarboxylative coupling of benzoic acid derivatives using hydrazone ligands

Takashi Mino*, Eri Yoshizawa, Kohei Watanabe, Taichi Abe, Kiminori Hirai, Masami Sakamoto

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

ARTICLE INFO

ABSTRACT

Palladium-catalyzed decarboxylative coupling of benzoic acid derivatives with arylboroxins gave biaryls using a catalytic amount of Pd(TFA)₂-hydrazone **1d** system with Ag₂CO₃ at 80 °C in good yields. We also found that decarboxylative coupling with aryl(trialkoxy)silanes gave biaryls using a Pd(TFA)₂-hydrazone **1g** system with AgF in good yields.

© 2014 Elsevier Ltd. All rights reserved.

Article history: Received 10 March 2014 Revised 2 April 2014 Accepted 7 April 2014 Available online 13 April 2014

Keywords: Palladium catalyst Decarboxylative coupling Arylboroxin Aryl(trialkoxy)silane

Palladium-catalyzed coupling reactions of aryl halides with aryl organometallics, such as the Suzuki-Miyaura coupling and Hiyama coupling, have become common and convenient synthetic methods in organic chemistry for biaryl compounds.¹ On the other hand, the Myers group reported a palladium-catalyzed decarboxylative Heck reaction of benzoic acid derivatives, instead of aryl halides, with olefins in 2002.² After the Gooßen group³ and the Forgione group⁴ independently reported the palladium-catalyzed decarboxylative coupling of benzoic acid derivatives, instead of arylboronic acids, with aryl bromides in 2006, the Becht group⁵ and the Liu group⁶ also reported the palladium-catalyzed decarboxylative coupling with aryl halides. More recently, the Liu group⁷ and the Tan group⁸ reported the palladium-catalyzed decarboxylative coupling of benzoic acid derivatives with arylboronic acids or sixmembered boronic acid esters under high reaction temperature (120-130 °C). However, palladium-catalyzed decarboxylative coupling of benzoic acids with other arylboronic acid derivatives, such as arylboroxins, and aryl(trialkoxy)silanes has not been reported. We recently demonstrated air-stable hydrazone as an effective ligand in such palladium-catalyzed C-C bond formations as the Suzuki–Miyaura coupling⁹ the Mizoroki–Heck type reaction,¹⁰ the Sonogashira coupling,¹¹ the Hiyama coupling,^{11a} and the allyl cross-coupling reactions.¹² We now report the use of hydrazone ligands 1-3 (Fig. 1) for a palladium-catalyzed decarboxylative coupling of benzoic acids with arylboroxins and aryl(trialkoxy)silanes.

Initially, we sought the optimal reaction conditions for a palladium-catalyzed decarboxylative coupling of the benzoic acid derivative with arylboroxin using the hydrazone ligand. 2,4,6-Trimethoxybenzoic acid and tri-*p*-tolylboroxin (**3a**) were chosen as model substrates with 7.5 mol % of Pd catalyst for 2 h under an air atmosphere at 80 °C (Table 1). Using 7.5 mol % of hydrazone **1a** as a ligand, we observed that the decarboxylative coupling in the presence of Pd(TFA)₂ with Ag₂CO₃ in DMSO as a solvent proceeded to give the corresponding product **4a** in 38% yield (Table 1, entry 1). We tested other hydrazones **1b–e**, **1h**, **2**, and **3** and found that hydrazone **1d** was an effective ligand for this reaction (entry **4**). Without ligand, the reaction gave low yields of the desired

etrahedror

^{*} Corresponding author. Tel.: +81 43 290 3385; fax: +81 43 290 3401. *E-mail address:* tmino@faculty.chiba-u.jp (T. Mino).

Table 1

Optimization of reaction conditions for the palladium-catalyzed decarboxylative coupling of 2,4,6-trimethoxybenzoic acid with tri-p-tolylboroxin^a

Entry	Ligand	Pd catalyst	Additive	Solvent	Yield ^b (%)
1	1a	$Pd(TFA)_2$	Ag ₂ CO ₃	DMSO	38
2	1b	$Pd(TFA)_2$	Ag_2CO_3	DMSO	24
3	1c	$Pd(TFA)_2$	Ag_2CO_3	DMSO	44
4	1d	Pd(TFA) ₂	Ag ₂ CO ₃	DMSO	71
5	1e	$Pd(TFA)_2$	Ag_2CO_3	DMSO	10
6	1h	Pd(TFA) ₂	Ag ₂ CO ₃	DMSO	52
7	2	$Pd(TFA)_2$	Ag_2CO_3	DMSO	58
8	3	$Pd(TFA)_2$	Ag_2CO_3	DMSO	Trace
9	-	$Pd(TFA)_2$	Ag_2CO_3	DMSO	36
10	PPh ₃ (15 mol %)	$Pd(TFA)_2$	Ag_2CO_3	DMSO	43
11 ^c	1d	$Pd(TFA)_2$	Ag_2CO_3	DMSO	63
12 ^d	1d	$Pd(TFA)_2$	Ag_2CO_3	DMSO	29
13 ^e	1d	$Pd(TFA)_2$	Ag_2CO_3	DMSO	6
14 ^f	1d	$Pd(TFA)_2$	Ag_2CO_3	DMSO	23
15	1d	$Pd(OAc)_2$	Ag_2CO_3	DMSO	27
16	1d	$Pd(acac)_2$	Ag_2CO_3	DMSO	22
17	1d	PdCl ₂	Ag_2CO_3	DMSO	37
18	1d	$PdCl_2(MeCN)_2$	Ag_2CO_3	DMSO	31
19	1d	Pd ₂ (dba) ₃ ·CHCl ₃	Ag_2CO_3	DMSO	44
20	1d	$Pd(TFA)_2$	Ag ₂ O	DMSO	30
21	1d	$Pd(TFA)_2$	AgOAc (6.0 equiv)	DMSO	30
22	1d	$Pd(TFA)_2$	AgF (6.0 equiv)	DMSO	28
23	1d	$Pd(TFA)_2$	Ag_2CO_3	DMSO/H ₂ O (3:1)	45
24	1d	$Pd(TFA)_2$	Ag_2CO_3	DMAc	10
25	1d	$Pd(TFA)_2$	Ag_2CO_3	DMF	7
26	1d	$Pd(TFA)_2$	Ag_2CO_3	NMP	Trace
27	1d	$Pd(TFA)_2$	Ag ₂ CO ₃	PhMe	0

^a Reaction conditions: 2,4,6-trimethoxybenzoic acid, tri-*p*-tolylboroxin (0.67 equiv), ligand (7.5 mol %), Pd source (Pd = 7.5 mol %), additive (3.0 equiv), solvent (0.2 M) at 80 °C for 2 h under air.

^b Isolated yields.

^c 0.40 mmol of *p*-tolylboronic acid was used instead of tri-*p*-tolylboroxin.

^d 0.40 mmol of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)toluene was used instead of tri-*p*-tolylboroxin.

^e 0.40 mmol of *p*-tolylboronic acid MIDA ester was used instead of tri-*p*-tolylboroxin.

^f 0.40 mmol of potassium *p*-tolyltrifluoroborate was used instead of tri-*p*-tolylboroxin.

product (entry 9). Using PPh₃ as the ligand, the reaction also gave low yields of the desired product (entry 10). When we used other organoboron compounds including *p*-tolylboronic acid, the yields decreased (entries 11–14). We also investigated the effect of various palladium sources (entry 4 vs entries 15–19), additives (entry 4 vs entries 20–22), and solvents (entry 4 vs entries 23–27). Using Pd(TFA)₂ with Ag₂CO₃ in DMSO led to good yields for this reaction (entry 4).

Under optimized reaction conditions, the effect of various arylboroxins in the decarboxylative coupling was investigated using 2,4,6-trimethoxybenzoic acid (Table 2).¹³ Using tri-*p*-tolylboroxin (**3a**), tri-*m*-tolylboroxin (**3b**) and triphenylboroxin (**3d**) led to good yields of the corresponding products (entries 1, 2 and 4). *Para*- and *meta*-substituted arylboroxins also gave products with moderate to good yields (entries 5–8). Unfortunately, the reaction with tri*o*-tolylboroxin (**3c**) and tri-1-naphthylboroxin (**3i**) did not give the corresponding products **4c** and **4i** (entries 3 and 9). Tri-2-naphthylboroxin (**3j**) and tri-3,4-dichlorophenylboroxin (**3k**) led to good yields of the corresponding products (entries 10 and 11). The reaction of 2,4,6-triethoxybenzoic acid with tri-*p*-anisylboroxin (**3h**) gave the corresponding product **4l** in 15% yield (entry 12). We also tested the reaction of 2,3,4,6-tetramethoxybenzoic acid and 2,6-dimethoxybenzoic acid. The reaction with tri-3,4-dichlorophenylboroxin (**3k**) gave the corresponding products **4m** and **4n** in low yields (entries 13 and 14).

We next tried the use of the hydrazone ligand for a palladiumcatalyzed decarboxylative coupling with aryl(trialkoxy)silanes instead of arylboroxins. We sought the optimal reaction conditions for decarboxylative coupling of 2,4,6-trimethoxybenzoic acid with p-tolyl(triethoxy)silane (5a) as model substrates with 7.5 mol % of Pd catalyst for 2 h under an air atmosphere at 100 °C (Table 3). Using 7.5 mol% of hydrazone 1d as a ligand, we observed that the decarboxylative coupling in the presence of Pd(TFA)₂ with AgF in DMAc as a solvent proceeded to give the corresponding product 4a in 53% yield (Table 3, entry 1). We tested other hydrazones 1e-h, 2, and 3 and found that hydrazone 1g was an effective ligand for this reaction (entry 4). Without ligand, the reaction gave low yields of the desired product (entry 8). Using PPh₃ as a ligand, the reaction also gave low yields of the desired product (entry 9). We investigated the effect of various palladium sources and additives (entries 10–15). Using $Pd(TFA)_2$ with AgF led to good yields for this reaction (entry 4). Several solvents were also tested

Download English Version:

https://daneshyari.com/en/article/5270026

Download Persian Version:

https://daneshyari.com/article/5270026

Daneshyari.com