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When considering non-central imaging devices, the computation of the relative pose requires the estimation of
the rotation and translation that transform the 3D lines from one coordinate system to the second. Inmost of the
state-of-the-art methods, this transformation is estimated by the computing a 6 × 6matrix, known as the gener-
alized essential matrix. To allow a better understanding of this matrix, we derive some properties associated with
its singular value decomposition.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Relative pose estimation is one of the main problems in computer
vision, which has been studied for more than a century [1]. The goal
is to estimate the rigid transformation between two cameras (or the
same camera in two different positions) using matching between
pixels that are images of the same 3D point in theworld. The cameras
(or camera) are considered calibrated. As a result, for each image
pixel, we know the corresponding 3D projection line in the world.
Thus, by computing the 3D projection lines associated with each
match of pixels, the problem can be seen as finding the rotation
and translation that align the 3D projection lines to ensure that
they intersect in theworld, as shown in Fig. 1. One of themost impor-
tant applications is its use in robotics navigation, in methods such as
visual odometry [2].

When considering conventional perspective cameras there are
several solutions for the relative pose. We note that there are mini-
mal (5-point algorithms) and non-minimal solutions. One of the
goals of minimal solutions is to allow the determination of outliers
from a large data-set, to build a robust data-set. On the other hand,
the goal of non-minimal solutions is to estimate directly an accurate
solution, from a given data-set. A common procedure is to run first

the minimal solutions using RANSAC [3,4], followed by iterative re-
finement, using non-minimal methods. In most of the approaches,
authors used the essential matrix [5]. Let us consider a rotation
matrix R∈SO 3ð Þ and a translation vector t ∈ ℝ3, from the epipolar
geometry one has
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where di
(1) and di

(2) denote the inverse projection of two pixels that
are the images of the same 3D points with distinct cameras with dif-
ferent external parameters— see Fig. 1(a). Matrix E⊂ℝ3× 3 is known
as the essential matrix. Some properties associated with the singular
value decomposition of E were derived in [6–8]:

Proposition 1. The essential matrix E is such that EET only depends on
the translation vector t and the singular value decomposition of EET has
one singular value equal to zero and other two singular values are
equal.

Based on properties of its singular value decomposition, one can
define the following constraints:

Proposition 2. E is an essential matrix (which means that it can be
decomposed into rotation and translation) if and only if

det Eð Þ ¼ 0 and
1
2
tr EET
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¼ 0:
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In addition, the following constraint can also be derived

1
2
tr EET
� �

E−EETE ¼ 0:

These constraints (which ensure that E can be decomposed into
rotation and translation in the way shown in Eq. (1)) were used in
most of the algorithms for theminimal 5-point relative pose of perspec-
tive cameras, for example [9–12]. We note that other solutions (that do
not explicitly use these properties) were derived, for example [13].

However, and mainly to get wide field of views, new imaging de-
vices have been developed — for example multiple perspective camera
systems, catadioptric cameras or cameraswith complex optical systems.
In most of these cases, camera models are non-central. As a result, all of
these methods for relative pose cannot be used and new algorithms
have to be developed.

To deal with general cases (central and non-central camera models)
Pless [14] proposed the concept of the generalized epipolar constraint.
He considered that a camera can be represented by the general camera
model (proposed by Grossberg and Nayar at [15]), which basically as-
sumes that all pixels are mapped into 3D straight lines in the world.
Similarly to the case described in the first paragraph, the match of
image pixels is mapped into 3D straight lines and the goal is to estimate
the rigid transformation that aligns these 3D lines to ensure that they in-
tersect. To represent lines, Pless used Plücker coordinates— a line is rep-
resented by l ≐ (d,m)⊂ ℝ6 [16] where d,m∈ ℝ3 are the direction and
moment of the lines respectively. Under this framework, Pless defined
the generalized epipolar constraint as:
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whereE is denoted as generalized essentialmatrix. FromEq. (2), one can
see that 17 corresponding 3D lines can be used to compute E linearly.
Sturm at [17] studied the properties of the generalized essential matrix
when the underlying camera model belongs to central, axial and xslit
cameras, which included theminimumnumber of correspondences be-
tween projection rays required for computing essential matrices using
linear equations, for each case. Li et al. at [18] show that despite the
rank deficiency in the generalized essential matrix for different camera
models, it is possible to compute the rotation and translation between
two views for different configurations and demonstrate real results on
multi-camera configurations. Kim and Kanade at [19] decomposed the
generalized essential matrix to study the degenerate cases for a specific
type of ray geometry.

To conclude, we note that several algorithms for the relative pose
under the framework of generalized camera models have been devel-
oped: Lhuillier [20] proposed a generic structure-from-motion method
based on an angular error; Schweighofer and Pinz [21] proposed a

globally convergent solution to the structure and motion estimation;
and Stewenius et al. [10] proposed a solution for the minimal 6-point
relative pose problem.

In the case of central cameras the essential matrix has been
extensively used to estimate relative pose. The generalized epipolar
constraint has been less frequently employed to estimate the relative
pose. One of the reasonsmay be linked to the fact the generalized essen-
tial matrix has not been analyzedwith the same level of detail as the es-
sential matrix for central cameras. One of the goals of this paper is to
derive some properties of the generalized essential matrix allowing a
deeper understanding of its structure. In particular we derive some
properties of the singular value decomposition of E (which can be com-
pared to the result of Proposition 1 in the case of E) that should be help-
ful for the applications of the generalized essential matrix in relative
pose applications (specially for theminimal case).We start by consider-
ing the following proposition:

Proposition 3. Matrix E is full-rank and its determinant is det(E) = 1.

Proof. Since E is a block triangular matrix and from [22], rank(E) =
rank(R) + rank(R) and since R∈SO 3ð Þ implies rank (R) = 3, one can
conclude that rank (E) = 6 and that the matrix has full-rank. Again,
since E is a block triangular matrix we may write det(E) = det(R)
det(R) and, since R∈SO 3ð Þ implies det(R) = 1, det(E) = 1, proving
the proposition. ■

Let us consider the decomposition denoted as

E≐UΣVT
; where U;V∈SO 6ð Þ which implies UUT ¼ VVT ¼ I ð3Þ

and Σ is a six-dimensional diagonal matrix. For notation, let us
consider the representation of the singular value decomposition,
such that:

EV ¼ UΣ ⇒ Evi ¼ σ iui; ∀i ¼ 1;…;6; ð4Þ

where: σi, vi and ui are called the ith singular value, and right and left
singular vectors respectively. ui and vi are the columns of U and V.

Themain contributions of the paper are derived in the following sec-
tion. We propose three theorems, namely: the eigen decomposition of
EET (Theorem 1), the singular value decomposition of E (Theorem 2),
and the sufficient conditions to ensure that a singular value decomposi-
tion represents an essential matrix (Theorem 3).

2. Singular value decomposition of E

From Eq. (3), let us consider the following results:

EET ¼ UΣVTV|ffl{zffl}
I

ΣUT ¼ UΣ2UT and ETE ¼ VΣUTU|ffl{zffl}
I

ΣVT ¼ VΣ2VT
;

ð5Þ

(a) (b)

Fig. 1. Representation of the relative pose problem for both central (a) and non-central cases (b).
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