[Tetrahedron Letters 55 \(2014\) 2904–2907](http://dx.doi.org/10.1016/j.tetlet.2014.01.011)

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Carbohydrate-based phosphines as supporting ligand for palladium-catalyzed Suzuki–Miyaura cross-coupling reaction

Ji-cheng Shi ^{a,b,}*, Zhonggao Zhou ^{b,c,}*, Shan Zheng ^b, Qing Zhang ^a, Li Jia ^{b,}*, Jinhuo Lin ^b

^a College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China ^b Key Laboratory of Polymer Materials of Fujian Province, Fujian Normal University, Fuzhou 350007, China

^c College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China

article info

Article history: Received 22 October 2013 Revised 26 December 2013 Accepted 3 January 2014 Available online 9 January 2014

Keywords: Carbohydrate Phosphine Palladium Cross-coupling

ABSTRACT

Carbohydrate-based mono-phosphines (1 and 2) derived from glucose have been explored as supporting ligand for palladium-catalyzed Suzuki–Miyaura reaction. The combination of phosphine to palladium in a ratio of 2:1 resulted in a longer-living system than that in a ratio of 1:1. Using K_2CO_3 as base, aryl bromides as well as active aryl chlorides can be coupled nearly quantitatively by 0.1–0.2 mol % of $1/Pd(OAc)_2$ with 95–99% of isolated yields. The amount of the catalyst could be lowered to 0.01 mol % under the optimized condition with 80% yield at room temperature. The carbohydrate hydroxyl group in 1 was found to contribute to catalytic activity.

- 2014 Elsevier Ltd. All rights reserved.

Metal-catalyzed cross-coupling methodology to form new carbon–carbon and carbon–heteroatom bonds has advanced organic synthesis significantly.[1](#page--1-0) The palladium- and nickel-catalyzed coupling of aryl and alkenyl halides (or pseudo halides) with organoboronic acids, known as the Suzuki–Miyaura reaction, $²$ $²$ $²$ is one of</sup> the most widely used methods 3 in the synthesis of pharmaceutical compounds, 4 natural products, 5 and polymers. 6 Thanks to the discovery and application of those ligands with electron-rich and sterically demanding characteristics, significant progresses have been witnessed in the last decade. $7-20$

The phosphine (1) , (methyl 3-deoxy-4,6-O-phenylmethenyl- α -D-altropyranosido-3-)-diphenylphosphine, is easily prepared from glucose 21 and has shown interesting coordination mode to transition metals.[22–28](#page--1-0) The two phenyl groups on phosphorus atom are chemically unequivalent shown by both of NMR and X-ray diffraction data, 21 indicating that the steric environment around phosphorus atom is crowed. The altropyrano-ring fusing with another six-member ring creates the highly sterically demanding around the 3-position phosphorus atom, leading to the chemical unequivalence of the two phenyl groups. Linking to an altropyrano-ring also makes the phosphorus atom electron-richer compared with triphenylphosphine. With the two features of electron-richer and sterically demanding, therefore it is attractive to explore the phosphine 1 as supporting ligand in the palladium-catalyzed Suzuki–Miyaura coupling reactions to enrich ligand library. The carbohydrate-based phosphine for cross-coupling reactions has been explored rarely.^{[29,30](#page--1-0)} Herein we report a highly efficient carbohydrate-based phosphine/palladium system for Suzuki–Miyaura coupling of aryl bromides and active aryl chlorides.

The carbohydrate phosphine 1 is easily accessed through 4 steps from cheap glucose (Scheme 1).²¹ It had been found that the 2-hydroxyl group of altropyranoside in 1 coordinated to palladium(II) under basic condition in dichloromethane at room temperature to form phosphino- and alkoxo-palladium(II) chelatecomplex 3 in 86% yield, 26 which had been isolated and fully characterized. Since Suzuki–Miyaura reaction is usually conducted under basic condition, the complex 3 can be expected to form especially as the ratio of phosphine to palladium is 2:1. In order to clarify the possible participation of species 3 in catalytic cycle, the 2-hydroxyl group in 1 was masked with methyl to form 2, methyl 3-deoxy-2-O-2-methyl-4,6-O-phenylmethenyl-α-p-altropyranosido-3-)-diphenylphosphine.

In the initial experiments, the Suzuki–Miyaura reaction was performed between 4-bromotoluene and phenylboronic acid in different solvents with 0.2 mol % of $Pd(OAc)_2$ using K_2CO_3 as base. It was found that the reaction proceeded smoothly at room temperature in both of THF and 95% ethanol at beginning for the ratio of phosphine to palladium either 1:1 or 2:1. The catalyst system with a ratio of 1:1 stopped after 12 h with the conversion of 4-bromotoluene reaching 80% and 90% [\(Table 1](#page-1-0), entries 1 and 3), respectively in THF

[⇑] Corresponding authors. Tel./fax: +86 668 2981105 (J.-c.S.); tel./fax: +86 797 8393670 (Z.Z.); tel./fax: +86 591 83465343 (L.J.).

E-mail addresses: jchshi_mmc@126.com (J.c. Shi), zhqzhou@foxmail.com (Z. Zhou), jiali_elite@126.com (L. Jia).

Scheme 1. Syntheses of carbohydrate-based phosphines and chelate-alkoxopalladium(II) complex.

Table 1 Effect of solvent and temperature on 1/Pd(OAc)₂-catalyzed Suzuki–Miyaura reaction of 4-bromotoluene with phenylboronic acid^a

Entry	Solvent	Pd/1	Temp $(^{\circ}C)$	Time (h)	Yield \mathfrak{b} (%)
1	THF	1:1	rt ^c	12	70
				24	80 (75)
2	THF	1:2	rt	12	65
				24	89 (86)
3	95% Ethanol	1:1	rt	12	75
				24	90 (86)
$\overline{4}$	95% Ethanol	1:2	rt	12	70
				24	97 (95)
5	Toluene	1:2	rt	12	40
				24	53
6	Acetonitrile	1:2	rt	12	5
				24	5
7	1,4-Dioxane	1:2	rt	12	15
				24	15
8	THF	1:2	73	3	99 (97)
9	95% Ethanol	1:2	88	12	95 (90)
10	Toluene	1:2	123	1	99 (96)
11	Acetonitrile	1:2	90	1	97 (95)
12	1,4-Dioxane	1:2	106	0.2	99 (99)
13	1,4-Dioxane	1:2	106	0.2	99 $(99)^d$

^a Reaction conditions: 4-bromotoluene (3.0 mmol), phenylboronic acid (4.5 mmol), Pd(OAc)₂ (0.006 mol), K₂CO₃ (6.0 mmol), solvent (9.0 mL). b GLC yield calibrated via dodecane as an internal standard; isolated yields were

given in parentheses (average of two runs).

 $22 - 32$ °C.

 d 0.003 mmol of Pd(OAc)₂.

and 95% ethanol, however the 2:1 ratio system showed a longer-living catalyst and can convert 4-bromotoluene to 97% level with 95% isolated yield of the desired biaryl (entry 4). Suzuki–Miyaura reaction is often needed in pharmaceutical industry, and the reaction carrying out in 95% ethanol at room temperature with mild base such as K_2CO_3 is highly desired.^{[29](#page--1-0)} These preliminary data showed that the carbohydrate-based phosphine 1 is much better than triphenylphosphine for palladium-catalyzed Suzuki–Miyaura reaction, with the latter as supporting ligand 3–5 mol % of palladium was usually employed.³¹ Besides, with the carbohydrate-based phosphine 1 as supporting ligand the desired reaction condition for pharmaceutical industry upon 0.2 mol % of the palladium loading could be reached. The ratio of 2:1 was chosen and applied for the following exploration of the carbohydrate-based phosphine as supporting ligand for palladium-catalyzed Suzuki–Miyaura reaction. Other solvents such as toluene, acetonitrile, and 1,4-dioxane afforded low conversion of substrate at room temperature (entries 5–7). However, when the reactions were carried out under reflux conditions in the solvents other than 95% ethanol (entry 9), the reactions were completed in a much shorter time, and nearly quantitative conversion with excellent isolated yields was achieved (entries 8, 10–12). It is worthy of notification that the catalyst could be reduced to 0.1 mol % without affecting the reaction time and yield when the reaction was carried out in refluxing 1,4-dioxane (entry 13).

After optimizing solvent and temperature, various bases were investigated in 95% ethanol. It looked that only K_2CO_3 matched with the solvent of 95% ethanol; other bases tried even such as KOH, $Cs₂CO₃$, and NaOH were not of choice (Table 2, entries 3, 6, and 8). Although the reason for such a big difference between K_2CO_3 and Cs_2CO_3 as base in 95% ethanol was unclear, that strong base such as NaOH and KOH did not work either might be a clue. On the other hand using 1,4-dioxane as solvent with 0.1 mol % of Pd(OAc)₂, a variety of bases including K₂CO₃, K₃PO₄.3H₂O, KOH₁ $Cs₂CO₃$, and NaOH proved to be the choice within 1 h (Table 1, entry 13; Table 2, entries 1, 3, 5, and 7), but around 1% of diphenyl could be observed when using KOH or NaOH as base. The performance of NaOAc was also good although with a longer time (Table 2, entry 9), but the bases $Na₂CO₃$ and NaOBu-t resulted in low yields (entries 11–14).

Since the phosphino- and alkoxo-palladium(II) chelate-complex 3 is easily formed, 26 we wondered the complex might participate in the catalytic reaction. Therefore, the hydroxyl-masked phosphine 2 was prepared and tested under the optimized condition to couple 4-bromotoluene with phenylboronic acid. Using 2 as supporting ligand it took 1 h to afford 96% of isolated yield in 1,4-dioxane ([Table 3,](#page--1-0) entry 9), whereas by 1 only 0.2 h of time consumed. In 95% ethanol at room temperature, the difference is slight. These data suggest that the 2-hydroxyl group functions in the catalytic cycle and has the effect to increase the reaction rate. Although it

Table 2

Effect of base on $1/Pd(OAc)_2$ -catalyzed Suzuki-Miyaura coupling 4-bromotoluene with phenylboronic acid

Entry	Base	React. Cond. ^a	Time (h)	Yield $^{\rm b}$ (%)
	$K_3PO_4 \cdot 3H_2O$		0.2	99 (99)
$\overline{2}$	$K_3PO_4.3H_2O$	Н	24	10
3	KOH		0.2	99 $(99)^c$
$\overline{4}$	KOH	Н	24	5
5	Cs ₂ CO ₃		0.2	98 (97)
6	Cs ₂ CO ₃		24	13
7	NaOH			98 $(97)^c$
8	NaOH	Н	24	5
9	NaOAc		6	94 (90)
10	NaOAc	Н	24	10
11	Na ₂ CO ₃		6	25
12	Na ₂ CO ₃	Н	24	$<$ 5
13	$NaOBu-t$		6	$<$ 5
14	$NaOBu-t$	Н	24	5

Reaction conditions: aryl halide (3.0 mmol), phenylboronic acid (4.5 mmol), base (6.0 mmol), I or II (I: Pd(OAc)₂ (0.003 mmol), ligand (0.006 mmol), 1,4-dioxane (9 mL), oil bath 106 °C; II: Pd(OAc)₂ (0.006 mmol), ligand (0.012 mmol), 95% ethanol (9 mL), room temperature).

^b GLC yield calibrated via internal standard, isolated yields were given in parentheses (average of two runs).

Around 1% of biphenyl was observed.

Download English Version:

<https://daneshyari.com/en/article/5270197>

Download Persian Version:

<https://daneshyari.com/article/5270197>

[Daneshyari.com](https://daneshyari.com)