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Many feature transforms have been proposed for the problem of trajectorymatching. These methods, which are
often based on shape matching, tend to perform poorly for biological trajectories, such as cell motion, because
similar biological behavior often results in dissimilar trajectory shape. Additionally, the criteria used for similarity
may differ depending on the user's particular interest or the specific query behavior. We present a rank-based
distance metric learning method that combines user input and a new set of biologically-motivated features for
biological trajectory matching. We show that, with a small amount of user effort, this method outperforms
existing trajectory methods. On an information retrieval task using real world data, our method outperforms
recent, related methods by ~9%.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

While it is generally accepted that themotion of cells can be affected
by environmental factors, such as the presence of tumors, inflammation
within blood vessels, and various types of treatments, the specific
factors that influence particular cell types are not yet fully understood.
For example, the subset of T lymphocytes known as natural killer T
(NKT) cells are known to be important for inflammation and disease
response within the liver and have the ability to destroy various foreign
objects, including tumor cells [1]. However, the underlying signals
responsible for NKT cells to change direction and speed are still largely
unknown. One method of investigation is to analyze cell trajectories
from in vivomicroscopy imagery. Automatic cell detection and tracking
algorithms (e.g., [2,3]) have advanced to the point of reliability to be-
come commercially available, and the once-manual process of accumu-
lating vast numbers of cell trajectories from video has been greatly
simplified. Statistics collected from these cell trajectories provide data
for initial efforts towards high-level cell motion behavior analysis.
Current approaches include estimating, for example, the number of
cells tracked, percent of moving cells, and velocity characteristics [4].
However, these metrics may be insufficient for discriminating between
biologically important behaviors. Consider the four primary behaviors
displayed by cells (depicted in Fig. 1):

• Sentinel. This is the most common behavior, also known as sentry or
patrolling [1]. The cell appears tomove randomly andwill often change
directionwithout an apparent destination. This lack of directedmotion
indicates that no chemical signals have been detected.

• Directed. The cell moves continuously through a single sinusoid, pre-
sumably towards a detected signal. Depending on the surrounding
vasculature, the cellmay appear to zig-zag throughmultiple sinusoids
attempting to reach the location of the signal.

• Tumbling. The cell moves through a sinusoid, stops, and reverses di-
rection, potentially multiple times in succession. One theory is that
tumbling cells have moved past the location of a detected signal and
are returning. This may occur if the signal is weak or attached to an-
other cell.

• Stopped. The cell remainsmotionless for a long period of time, usually
adhering to the wall of a blood vessel. Cells generally do not stop
within sinusoids; it is believed that stopped cells are responding to
chemical signals.

The motion pattern of a cell, or more interestingly, the change in be-
havior under a new influence, may give insight into the environmental
factors that affect cell behavior. A deep understanding of cell responses
in different conditions could lead to better treatments for diseases or tu-
mors. Experiments for understanding cell motion behavior have moved
beyond the simple velocity metrics and towards comparing trajectories
from cells under different conditions. Manually searching through data-
bases of cell trajectories to detect patterns is impractical, so methods
from automated trajectory matching have been applied to this problem.

Trajectory matching methods are popular in a number of domains,
particularly surveillance and sketch recognition. Generally, the ap-
proach is to devise a trajectory-based distance metric to be either
used for clustering or direct similarity comparisons. A variety of
approaches have been proposed [5]. For example, Bashir et al. [6]
described each trajectory by a sequence of sub-trajectories, where
each sub-trajectory was represented by the coefficients obtained from
principal component analysis (PCA). The PCA components were used
with spectral clustering to group trajectories, and matching was
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performed through a combination of clustering and string matching.
Another method [7] uses histograms to model the directional probabil-
ity of a trajectory and perform a coarse clustering; point-to-point
distances were used for finer matching. Anjum and Cavallaro [8] cluster
trajectories in multiple feature spaces and fuse the clusters from
each feature space to obtain a higher-level final clustering. Separate
from clustering, some approaches focus on a similarity measure be-
tween trajectories. Vlachos et al. [9] transformed the trajectories into
a rotation-, translation-, and scale-invariant space for handwriting rec-
ognition. Jiang et al. [10] modeled each trajectory as a Hidden Markov
Model and used the Bayesian information criterion as a dissimilarity
measure. Hsieh et al. [11] modeled trajectories as both a syntactic
string representation and Bézier curve approximation and compared
instances using a combination of the edit distance between string repre-
sentations and the point-to-point distance between the longest com-
mon subsequence of the Bézier curves.

The variety of approaches highlights both the importance and diffi-
culty of the problem of trajectory matching. One aspect in common
among all these approaches is the focus on trajectory shape. Trajectory
matching for cells is complicated by the fact that two cells that exhibit
similar biological behavior do not necessarily display similar trajectory
shapes. For example, consider the examples of the “Sentinel” motion
shown in Fig. 1. An expert in cell motion analysis would visually identify
these as similar patterns, even though, in isolation, the trajectory shapes
are quite dissimilar. We demonstrate that shape-centric methods fail to
identify this type of similarity.

In this work, we address this problem by: (1) developing a set of
basic features motivated by cell behavior and (2) leveraging user
input for distancemetric learning on trajectories. A typical motion anal-
ysis task includes finding semantically similar trajectories given a data-
base of trajectories and a query. With our approach, the database of
trajectories are represented using biologically-motivated features and
the analyst encodes his knowledge by rating a small number of exam-
ples from the database. From this input, we derive a distance metric
over the set of trajectories and present the database items sorted by
relevance. This rank-based learning method follows the approach pre-
viously applied to other information retrieval tasks, such as web page
ranking, or, in the biomedical domain, eye cataract grading from
images [12]. In Section 2, we describe a set of biologically-motivated
features, and in Section 3 we describe how these features are incorpo-
rated into a learning framework for trajectory matching. In Section 4,
we show results on a trajectory matching problem using NKT cell
data, and, in Section 5, show how these results can be used to inform
further biological experiments.

2. Biological trajectory features

Given a trajectory T={p0, p1,…, pnT−1} generated from some pro-
cess, such as automated cell tracking, where each pi=〈xi, yi〉 is one of
nT temporally-sequential points in image coordinates, we transform T
into a feature spacewhich incorporates both speed and shape. Trajecto-
ry shape is described in both local and global terms. The local shape
features describe changes of direction throughout the trajectory with
a set of syntactic symbols. The global shape features captures the overall
scope of the trajectory.

2.1. Local shape

Similar to the approach of Hsieh et al. [11], a trajectory T is repre-
sented by a subset of points, QT, having high curvature or significant
directional changes, called control points. For each point p∈T, curve
angle, α(p) is calculated as follows:

α pð Þ ¼ cos−1‖p−pþ‖2 þ ‖p−p−‖2−‖p−−; pþ‖2

2‖p−p−‖‖p−pþ‖
ð1Þ

where p− and p+ refer to points (temporally) before and after p, respec-
tively. These points are selected to meet the criteria dmin≤∥p−p−∥≤
dmax and dmin≤∥p−p+∥≤dmax. To improve the local curve angle esti-
mates, dmin and dmax are selected to balance the effect of noisy point
locations with an accurate estimate of the local curve angle. We set
dmin and dmax to |T|/20 and |T|/15 respectively. Points in T which satisfy
α(p)≤Tα are candidates for QT. We follow [11] and set Tα=150∘. To
reduce redundant shape information within QT, control points are
required to be at least dmin apart. If two points are closer than dmin, the
point with the smaller curvature (higher α(p)) is removed from QT.
Finally, the first and last points in T, p0 and pnT−1, are included in QT.

Next, a syntactic label is given to each point in QT that incorporates
both curve angle and curve direction. For each point p and its neighbor-
ing points qp− and qp

+, sequentially before and after, respectively, in QT,
we calculate the curve direction at p based on the vectors qp−p and qp−

qp+:

θ pð Þ ¼ clockwise;
counterclockwise;

if q−
p p⊗q−

p qþ
p > 0

otherwise

�
ð2Þ

where⊗ denotes the cross product of the vectors. Additionally, for each
p in QT, we calculate the angle α(p) using Eq. (1) replacing p− and p+

Fig. 1. Each column shows two examples of the primary cell motion behaviors. Color indicates start (blue) and end (red) of motion. Trajectories which display similar biological
behavior may appear visually dissimilar.
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