ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Novel DNA fluorescence probes based on N-[5-(11-functionalised-undecylamino)-9H-benzo[a]phenoxazin-9-ylidene] propan-1-aminium chlorides: synthesis and photophysical studies

Carla M. A. Alves a, Sarala Naik a, Paulo J. G. Coutinho b, M. Sameiro T. Gonçalves a,*

ARTICLE INFO

Article history:
Received 28 May 2010
Revised 26 October 2010
Accepted 29 October 2010
Available online 4 November 2010

Keywords: Benzo[a]phenoxazinium dyes Nile Blue DNA probes Near-infrared fluorophores Functionalised probes

ABSTRACT

Fluorescent benzo[a]phenoxazinium chlorides possessing undecylamino chains with functionalised ending-groups (hydroxyl, carboxylic acid and the ester group) as substituents at the 5-position of the heterocycles were successfully synthesised and characterised. These compounds were used in photophysical studies with DNA, and compared to the corresponding analogue with a non-functionalised terminal (methyl group). It was found that the functionalised terminal exerts a dramatic influence on the type of interaction with the hydroxyl group promoting intercalation, while the ester group promotes groove binding.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the development of fluorescent probes, which offer a wealth of information in various fields, has attracted the interest of researchers. ^{1–3} The strong influence of the surrounding medium on fluorescence emission, has led to fluorescent molecules being used as probes for the investigation of physicochemical, biochemical and biological systems. The solubility of the probes and the resulting specific interactions that can be established with the system to be probed are governed by their chemical nature; the hydrophobic, hydrophilic or amphiphilic character of the probe is essential in this regard. The presence of a long hydrocarbon chain in the fluorescence probe allows it to bind easily with the hydrophobic parts of biomolecules, enabling the fluorophore moiety to probe its environment. ⁴

Studies on the interaction between DNA and ligands are particularly important for therapeutic⁵ and scientific reasons.^{6,7} Among other molecules, Nile Blue, a benzo[a]phenoxazinium dye with a planar and rigid structure, has been reported as a DNA probe,⁸ and was considered to be a good intercalator of the DNA double helix.⁹ Mitra et al. clearly identified non-specific electrostatic and intercalative modes of interaction of the label with DNA at lower and higher DNA concentrations, respectively.¹⁰ The

minor or major groove DNA binding of molecules is another possibility of interaction with nucleic acids. 11,12

Bearing in mind earlier observations, combined with our current research interest on benzo[a]phenoxazinium dyes,¹³ and following on from our previous evaluation of the potential of this family of fluorophores as DNA labels,^{13e} it was decided to synthesise fluorescent benzo[a]phenoxazinium chlorides bearing undecylamino side-chains with functionalised ending-groups. The main purpose of the work described was to study the effect of these terminal groups, which would function as an anchor in the DNA chain, thus facilitating and stabilizing the interaction of the fluorochrome moiety with DNA bases.

Benzo[a]phenoxazinium chlorides **1a–c** were synthesised by the condensation of 5-ethylamino-4-methyl-2-nitrosophenol hydrochloride **2** with N-substituted-naphthylamines **3a–c**, in an acidic medium (Scheme 1). The required 5-ethylamino-4-methyl-2-nitrosophenol hydrochloride **2** was synthesised, using the usual procedure¹⁴ involving treatment of the corresponding 3-ethylamino-4-methylphenol with sodium nitrite in an acid solution. Intermediates **3a,b** were prepared by alkylation, in ethanol, of 1-naphthylamine with 11-bromoundecan-1-ol and 12-bromododecanoic acid, respectively.¹⁵ Hydrolysis of the ester group of intermediate **3b** (1 M NaOH/1,4-dioxane) yielded the corresponding 12-(naphthalen-1-ylamino)dodecanoic acid **3c**. After column chromatography purification or isolation by extraction (**3c**), these compounds were obtained as oils (**3a**, 73%; **3b**, 70%, together with compound **3c** in 17%) or an oily solid (**3c**, 90%), and were characterised

^a Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

^b Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

^{*} Corresponding author. Tel.: +351 253 604386; fax: +351 253 604382. E-mail address: msameiro@quimica.uminho.pt (M.S.T. Gonçalves).

Scheme 1.

by high resolution mass spectrometry, IR and NMR (¹H and ¹³C) spectroscopy.

The reaction of 5-ethylamino-4-methyl-2-nitrosophenol hydrochloride **2** with functionalised precursors 11-(naphthalen-1-ylamino)undecan-1-ol **3a** and ethyl 12-(naphthalen-1-ylamino) dodecanoate **3b**, in the presence of hydrochloric acid, refluxed in ethanol, produced the benzo[a]phenoxazinium chlorides **1a,b**. ¹⁶ In the preparation of compound **1c**, the nitroso intermediate **2** reacted with 12-(naphthalen-1-ylamino)dodecanoic acid **3c**, in an acidic medium, using DMF as a solvent and heating at 80 °C. Compound **1d** was synthesised by the condensation of nitrosophenol **2** with *N*-dodecylnaphthalen-1-amine **2d**, in the presence of hydrochloric acid, refluxed in ethanol, as previously described. ^{13e}

After purification by column chromatography, cationic dyes **1a**-**c** were isolated as solid materials in moderate to high yields (Table 1) and were fully characterised by the usual analytical techniques.

Electronic absorption and emission spectra of 10^{-6} M solutions of benzo[a]phenoxazinium chlorides 1a–c, in degassed absolute ethanol, were measured and the summarised data are presented in Table 1, in comparison with compound 1d.

The longest wavelength of maximum absorption (λ_{max}) of all compounds was located between 616 and 629 nm, with molar absorptivities ranging from 58,327 to 63,128 M $^{-1}$ cm $^{-1}$. Regarding fluorescence properties, the quantum yields (Φ_F) were calculated using oxazine 1 as a standard (Φ_F = 0.11 in ethanol),¹⁷ which was excited at 590 nm, the excitation wavelength used for each one of the compounds to be tested. Emission maxima (λ_{em}) for all compounds in ethanol were at about 655 nm, the Stokes' shifts were from 26 to 38 nm. All compounds exhibited similar levels of fluorescence, with Φ_F 0.24–0.29.

As a preliminary photophysical study for the use of benzo[a]phenoxazinium derivatives $\mathbf{1a-d}$ as DNA non-covalent markers, absorption and emission spectra were measured as a function of DNA content, keeping the concentration of fluorophore at 2×10^{-6} M.¹⁸ Compounds $\mathbf{1a-d}$ behave differently depending

Table 1
Synthesis, UV-vis and fluorescence data for compounds 1a-d in ethanol

Compound	Yield [%]	$\lambda_{\text{max}} [\text{nm}]$ (ϵ , $\text{M}^{-1} \text{cm}^{-1}$)	λ _{em} [nm]	$arPhi_{ extsf{F}}$	Stokes' shift [nm]
1a	64	616 (59,749)	654	0.29	38
1b	49	629 (62,394)	655	0.28	26
1c	33	625 (58,327)	655	0.24	30
1d ^{13e}	83	627 (63,128)	655	0.27	28

on the side-chain terminating group. In Figures 1-4, normalised emission and absorption spectra are shown for fluorophores with hydroxyl (1a), ethyl ester (1b), carboxylic acid (1c) and methyl (1d) terminations, for various P/D values, which represent the concentration ratio between DNA phosphate groups and fluorophore molecules. It can be concluded that the presence of the hydroxyl group (compound 1a) promotes a greater interaction of the benzo[a]phenoxazinium unit with the nucleotide bases. In this case, a 20 nm shifted emission appears above P/D = 10; this can safely be attributed to an intercalation complex of the benzo[a]phenoxazinium moiety with the nucleotide bases (Fig. 1). The fact that the hydroxyl termination facilitates intercalation, indicates a more favourable fitting of the side-chain in the DNA backbone. Absorption spectra confirm the formation of a nucleotide/benzo[a]phenoxazinium complex for compound 1a due to the appearance of new absorption bands at P/D > 10. The observed broad absorption spectra in water was previously reported by us for similar compounds^{13d,e} and interpreted by the presence of H-aggregates (580 nm), the neutral basic form stabilized by the ethanol enriched solvation shell (~500 nm) and its H-aggregate (~450 nm). In the case of compound 1a, the absorption spectra show H-aggregates and the cationic acid form (\sim 620 nm). Upon DNA addition, up to P/D = 5, the fraction of H-aggregates increases with a concomitant decrease of the fluorescence quantum yield (see inset of right panel in Fig. 1). This is explained by electrostatic binding, which favours aggregate formation. The intercalation of compound 1a in double stranded DNA is further confirmed by DNA melting studies. Above 80 °C, the double strand separates into two complementary single-strand (ss) DNA chains. This process is partially reversible due to chain dynamics, which hinders the exact recombination of the complementary ss-DNA strains. Compound 1a reports this process as seen in Figure 1: upon heating, the spectrum of the DNA solution at P/D = 100 becomes similar to that obtained in the absence of DNA; after cooling to room temperature, the absorption spectrum regains its form but with less intensity.

Compound **1b** with an ethyl ester termination shows a different behaviour. At low P/D a huge enlargement of the blue side of the spectrum was observed, corresponding to an emission band at around 600 nm (Fig. 2). This emission corresponds to the basic neutral form of the compound¹³ and is already observable in the absence of DNA. At P/D = 1, a sudden increase of the basic form is observed, followed by a gradual decrease and enlargement of the red side of the spectrum for higher P/D values. These results can be interpreted by initial groove binding in such a way that the 5-amino group is protected from H-bond interaction. This interaction precludes the appearance of base form emission in an aqueous

Download English Version:

https://daneshyari.com/en/article/5270670

Download Persian Version:

https://daneshyari.com/article/5270670

<u>Daneshyari.com</u>