Tetrahedron Letters 52 (2011) 129-132

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Direct Leuckart-type reductive amination of aldehydes and ketones: a facile one-pot protocol for the preparation of secondary and tertiary amines

Danielle O'Connor, Ashley Lauria, Steven P. Bondi, Shahrokh Saba*

Department of Chemistry, Fordham University, Bronx, NY 10458, USA

ARTICLE INFO

ABSTRACT

amines is described.

Article history: Received 12 July 2010 Revised 29 October 2010 Accepted 1 November 2010 Available online 5 November 2010

Keywords: Reductive amination Secondary amines Tertiary amines Aldehydes Ketones

In modern organic synthesis, the direct reductive amination (DRA)¹ of aldehydes and ketones is a powerful and highly attractive protocol for the synthesis of primary, secondary, and tertiary amines.² Its one-step procedure offers operational convenience and avoids preformation or isolation of the imine or iminium intermediates prior to their reduction. The selective reduction of the in situ formed C=N bond and the stability of the reducing agent under the reaction conditions, which are often acidic, are critical to the overall success of the process. Catalytic hydrogenation methods,³ both economical and eco-friendly, are effective for DRAs but are not compatible with substrates with reducible moieties, such as cyano⁴ and nitro⁵ groups, and may yield alcohols as by-products. Among metal hydride reducing agents, sodium cyanoborohydride (NaBH₃CN)⁶ and sodium triacetoxyborohydride $(NaBH(OAc)_3)$,⁷ both commercially available, have been widely used. Sodium cyanoborohydride is highly toxic and formation of toxic by-products, such as HCN and NaCN create problematic disposal issues and may contaminate the product.⁸ Other drawbacks include the need to use a fivefold excess of the amine and slow reaction rates with aromatic ketones and amines of lower basicity. Sodium triacetoxyborohydride, though less toxic, is flammable and water-reactive, and similar limitations are encountered with aromatic, α , β -unsaturated, and sterically hindered ketones.^{7a} To overcome such limitations, a variety of other reductant systems, though not as widely used, have been developed. The majority of these reagents employ a catalyst combined with a reducing agent.⁹

An alternative DRA approach for the preparation of amines is the Leuckart reaction,¹⁰ whereby an aldehyde or a ketone is heated in the presence of ammonium formate¹¹ or formamide,¹² or mixtures of formamide and formic acid.^{13,14} The product of the Leuckart reaction is often the formyl derivative of the desired amine,^{11–13} which must be hydrolyzed with acid. This requirement makes the Leuckart reaction unsuitable for substrates with acid-sensitive moieties. Ingersoll et al.¹⁵ improved the original Leuckart procedure and expanded the scope of the reaction by developing an ammonium formate-formamide reagent that, when combined with a ketone and heated in the range of 160–185 °C for several hours followed by acid hydrolysis, afforded 1° amines in 60–80% yield.

A high-yielding and facile one-pot Leuckart-type reaction for rapid access to a number of 2° and 3°

Over the years, different mechanisms have been suggested for the Leuckart reaction;¹⁶ imines, iminium ions, *N*-formyl imines, or *N*-formyl iminium cations have been implicated as intermediates in the process.

As part of our continued efforts on the use of simple ammonium salts in synthetic transformations,¹⁷ we recently reported a high-yielding one-pot procedure for the preparation of a wide range of iminium salts (1) by direct combination of an aldehyde or a ketone with a 2° amine free base in the presence of ammonium tetrafluo-roborate, ammonium perchlorate, or ammonium hexafluorophosphate (Scheme 1).¹⁸

Since iminium ions are possible intermediates in the Leuckart reaction, we envisioned that reduction of the in situ formed C=N bond of **1** should occur readily by substituting ammonium formate¹⁹ for the ammonium salts previously used for the preparation of iminium salts **1**. Therefore, we decided to explore the preparation

© 2010 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +1 718 817 4440; fax: +1 718 817 4432. *E-mail address:* saba@fordham.edu (S. Saba).

^{0040-4039/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.11.006

Scheme 1. One-pot preparation of iminium salts **1**.

Scheme 2. One-pot Leuckart-type preparation of amines 4.

Table 1				
One-pot preparation	of 2°	and 3°	amines	(4)

Entry	Aldehyde/ketone	Amine	Product	Yield (%)		Time (h)
				Benzene	Toluene	
1	0	N-H 3а		84	54	1.5
2	o	3a		89	72	1.5
3	o	3a		80	73	1.5
4		3a		87	75	1.5
5	0	3a		82	71	1.5
6	O	3a	N N	79	71	1.5
7		3a		66	75	1.5
8	Me ₂ N 2a	3a	Me ₂ N	89	70	1.5
9	2a	H 3b	Me ₂ N	85	75	1.5
10	CHO 2b	3a		76	73	1.5
11	2b	3a	O N N	73	72	1.5

Download English Version:

https://daneshyari.com/en/article/5270674

Download Persian Version:

https://daneshyari.com/article/5270674

Daneshyari.com