Tetrahedron Letters 55 (2014) 1045-1048

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Trifluoromethanesulfonic acid-catalyzed solvent-free bisindolylation of trifluoromethyl ketones

etrahedro

Yi Wang^a, Yu Yuan^{a,*}, Chun-Hui Xing^{b,*}, Long Lu^{b,*}

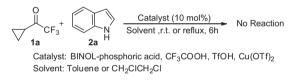
^a College of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province 225002, PR China ^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China

ARTICLE INFO

Article history: Received 31 October 2013 Revised 9 December 2013 Accepted 20 December 2013 Available online 29 December 2013

Keywords: Bisindolylation Solvent-free Trifluoromethyl ketone Indole Trifluoromethanesulfonic acid

ABSTRACT


A trifluoromethanesulfonic acid-catalyzed solvent-free bisindolylation reaction of indoles with alkyl and aryl trifluoromethyl ketones has been developed. The trifluoromethyl-substituted bisindolylalkane derivatives were synthesized in moderate to excellent yields.

© 2014 Elsevier Ltd. All rights reserved.

Bisindolylalkane is an important structural unit of natural products. Recent studies have shown that bisindolylalkanes and their derivatives exhibit a wide range of bioactivities.^{1,2} Therefore, the synthesis of those useful compounds has attracted great attentions. Several methodologies were developed by synthetic organic chemists.^{3–5} The most convenient and straightforward ways for synthesizing bisindolylalkane compounds are Lewis or Brønsted acid-catalyzed addition reactions of indoles with carbonyl compounds.³ In addition, transition-metal-catalyzed procedures also appeared.⁴ Among them, several eco-friendly solvent-free protocols have been developed.⁵

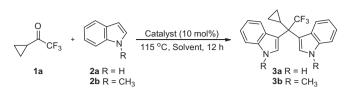
On the other hand, the introduction of fluorine or fluoro-containing substitutes into organic molecules, such as the trifluoromethyl group, often increases their bioactivities.⁶ In our everlasting effort of studying the chemical transformation of fluorinated synthetic building blocks,⁷ we are interested in investigating the reactions of trifluoromethyl ketones with indoles and synthesizing of fluorine-containing indole derivatives with potential biological activities.

Due to the strong electron-withdrawing nature of the trifluoromethyl group, it can effectively stabilize the α -C–O bond of intermediate trifluoromethyl-substituted tertiary alcohols.⁸ So, it is not easy to make bisindolylalkanes from trifluoromethyl ketone

Scheme 1. Preliminary investigation of the reaction of ketone 1a with indole.

through an acid-catalyzed pathway. Only a few publications mentioned the preparation of trifluoromethyl substituted bisindolylalkane compounds.^{8a,9} Recently, Sasaki and co-workers reported a Brønsted acid catalyzed stepwise reaction between trifluoromethyl- α , β -ynones and indoles to afford unsymmetrical trifluoromethyl-substituted bisindolylpropynes.^{8a} For the relatively unreactive alkyl trifluoromethyl ketones, however, the similar transformation has not been reported so far. Herein, we describe a trifluoromethanesulfonic acid catalyzed bisindolylation reaction of alkyl and aryl trifluoromethyl ketones under solvent-free condition.

We were particularly interested in synthesizing trifuoromethyland cyclopropyl-containing bisindolylalkane compounds. Thus, the initial study began with the examination of the reaction of trifluoromethyl cyclopropyl ketone **1a** with indole **2a**.¹⁰ No reaction took place between **1a** and **2a** at room temperature in the presence of various Lewis or Brønsted acid catalysts in different solvents. Even being refluxed for 6 h, only trace amount of product was observed when Cu(OTf)₂ or TfOH was used as catalyst, and most of **1a** and **2a** were left unchanged (Scheme 1). However, Ma and co-workers


^{*} Corresponding authors. Tel.: +86 514 87975590x8601 (Y.Y.), +86 21 54925485 (C.-H.X. and L.L.).

E-mail addresses: yyuan@yzu.edu.cn (Y. Yuan), xingch@sioc.ac.cn (C.-H. Xing), lulong@sioc.ac.in (L. Lu).

^{0040-4039/\$ -} see front matter @ 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.12.078

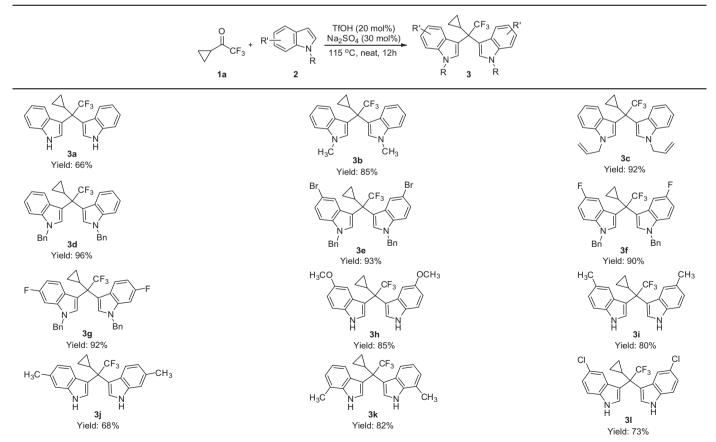
Table 1

Optimization of the reaction conditions^a

Entry	R	Catalyst	Additive	Solvent	Yield ^b (%)
1	CH ₃	BINOL-phosphoric acid	_	Toluene	_
2	CH ₃	CF ₃ COOH	_	CH ₂ ClCH ₂ Cl	-
3	CH ₃	TfOH	_	CH ₂ ClCH ₂ Cl	26
4	CH ₃	TfOH	_	Toluene	53
5	CH ₃	TfOH	_	1,4-Dioxane	34
6	CH ₃	TfOH	_	CH ₃ CN	8
7	CH ₃	Cu(OTf) ₂	_	Toluene	35
8	CH ₃	$Cu(OTf)_2$	_	CH ₂ ClCH ₂ Cl	50
9	CH_3	AgOTf	_	CH ₂ ClCH ₂ Cl	22
10	CH ₃	Sc(OTf) ₃	_	CH ₂ ClCH ₂ Cl	50
11	CH ₃	TfOH	4 Å MS (500 mg)	Toluene	50–73 ^{c,d}
12	CH ₃	TfOH	Na ₂ SO ₄ (30 mol %)	Toluene	80 ^d
13	CH ₃	TfOH	Na ₂ SO ₄ (30 mol %)	Toluene	88 ^{d,e}
14	CH ₃	TfOH	Na ₂ SO ₄ (30 mol %)	Solvent-free	92 (85) ^d
15	Н	TfOH	Na ₂ SO ₄ (30 mol %)	Solvent-free	69 (66) ^d

^a Reaction conditions: 1a (0.2 mmol), 2a or 2b (0.6 mmol), catalyst (0.02 mmol, 10 mol %), 0.25 mmol 1a/mL solvent, stirred at 115 °C for 12 h in a sealed tube.

^b Yields were determined by ¹⁹F NMR using 1-fluoronaphthalene as an internal standard; isolated yields are listed in parentheses.


^c Poor reproducibility of experiments using 4 Å MS as additive.

^d 20 mol % TfOH (0.04 mmol) was used.

^e More concentrated reaction mixture: 2.0 mmol **1a**/mL solvent.

Table 2

Scope of TfOH-catalyzed bisindolylation of trifluoromethyl cyclopropyl ketone^{a,b}

Download English Version:

https://daneshyari.com/en/article/5270899

Download Persian Version:

https://daneshyari.com/article/5270899

Daneshyari.com