ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A facile entry into a novel class of dispiroheterocyclic framework through 1,3-dipolarcycloaddition of azomethine ylides with 3-arylidene-4-chromanones as dipolarophiles

T. Augustine ^a, Charles C. Kanakam ^a, Scholastica Mary Vithiya ^b, V. Ramkumar ^{c,*}

- ^a Postgraduate and Research Department of Chemistry, Presidency College, Chennai 600 005, India
- ^b Post graduate and Research Department of Chemistry, Auxilium College, Vellore 632 006, India
- ^c Department of Chemistry, Indian Institute of Technology, Chennai 600 036, India

ARTICLE INFO

Article history: Received 25 April 2009 Revised 1 August 2009 Accepted 7 August 2009 Available online 12 August 2009

Keywords: Chromanones Azomethine ylides Dispiroheterocycle 1,3-Dipolar cycloaddition

ABSTRACT

The cycloaddition reaction of azomethine ylides, generated through decarboxylation, with (*E*)-3-arylidene-4-chromanones as dipolarophiles has been investigated. A high degree of regioselectivity has been observed in the synthesis of a new class of functionalized dispiroheterocyclic compounds bearing chromanone and acenaphthenequinone framework. The structures were established by spectroscopic techniques as well as single crystal X-ray analysis.

© 2009 Elsevier Ltd. All rights reserved.

Spiroheterocycles represent an important class of naturally occurring substances characterized by their highly pronounced biological activities. ^{1–3} Intermolecular 1,3-dipolar addition reactions are considered as one of the most useful processes for the construction of five-membered ring containing the pyrrolidine structural unit. ^{4,5} This method is widely used for the synthesis of natural products such as alkaloids and pharmacologically important compounds. ⁶ 1,3-Dipolar cycloaddition provides a way for the synthesis of many dispiroheterocyclic systems through the cycloaddition reaction of azomethine ylides with the definite dipolarophiles.

Pyrrolidine and oxindole alkaloids⁷ constitute another class of compounds with significant biological activity which are normally found in rhyncotylline, corynoxeine, nitraphylline, vincatine, horsifiline, etc. Highly substituted pyrrolidines have attracted much interest as they contribute to the central structural element of many alkaloids and pharmacologically active compounds.^{8,9} Although highly substituted spiropyrrolidines are known, there seems to be no report on the synthesis of dispiroheterocycles using acenaphthenequinone and chromanone moiety. In pursuit of our research on the synthesis of novel dispiropyrrolidinyl derivatives (**4a–g**), we herein report the 1,3-dipolar cycloaddition reactions of (E)-3-arylidene-4-chromanones (**3**) with the azomethine ylides

generated from acenaphthenequinone (1) and sarcosine (2) through decarboxylation method.

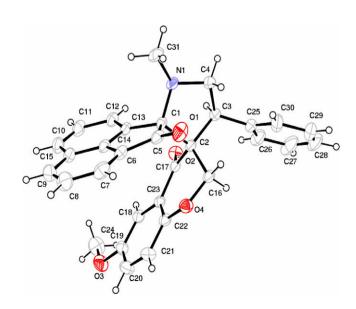
Refluxing a solution of (E)-3-benzylidenechroman-4-one ($\mathbf{3}$) in boiling aqueous methanol with acenaphthenequinone ($\mathbf{1}$) and sarcosine ($\mathbf{2}$) afforded 1-N-methyl-spiro[2.2'] acenaphthen-1'one-spiro[3.3"](chroman-4"-one)-4-aryl pyrrolidine ($\mathbf{4}$) (Scheme 1, Table 1). The reaction gave a single product in all cases as evidenced by thin layer chromatography (TLC). The reaction afforded a series of novel spiro derivatives ($\mathbf{4a-g}$)¹⁵⁻²¹ through regioselective cycloaddition of azomethine ylides with the exocyclic double bond of 3-arylidene-chroman-4-ones ($\mathbf{3}$) in all cases. No trace of the other regioisomer ($\mathbf{5a-g}$) was detected. The cycloaddition proceeded smoothly to afford the *syn-endo* cycloadduct. The regio and stereochemical outcome of the cycloaddition was determined by spectrochemical and single crystal X-ray analysis. 11

The IR spectral analysis of 4 showed two carbonyl peaks at $1690 \, \mathrm{cm^{-1}}$ and $1718 \, \mathrm{cm^{-1}}$ which correspond to the chromanone and acenaphthenequinone ring carbonyls, respectively. The $^{1}\mathrm{H}$ NMR spectrum of the cycloadduct **4**, exhibited a singlet at δ 2.09, which corresponds to N-CH₃ protons. A triplet at δ 4.98 corresponds to benzylic proton. The regiochemical outcome of the azomethine ylide cycloaddition with conformationally restricted *S-cis* enones, 3-arylidenechroman-4-ones (**3**) is probably attributed to the involvement of the antiylide 12 in the transition state, where the *exo* orientation of the dipolarophile to *W*-periphery of the ylide prevents the formation of the *syn* ylide which is not observed due

^{*} Corresponding author. Tel.: +91 044 22575244. E-mail address: vramkumar@iitm.ac.in (V. Ramkumar).

Scheme 1.

to the unfavorable steric repulsions between the carbonyl oxygen of acenaphthenequinone ring and chroman-4-one ring systems. ¹³ Further the NOE studies show the nonbonded interactions between the conformationally nearer protons in the molecules, which is fur-


ther confirmed in the crystal structure of the compound.¹⁴

Further, the regiochemistry of the cycloadduct **4** was established by the ^1H NMR spectrum where a doublet at δ 4.56 corresponds to aryloxymethyl protons and a doublet at δ 3.28 corresponds to N–CH $_2$ proton. Also the ^{13}C NMR showed two signals at δ 62.00 and δ 71.47 due to the spiro carbon atoms and peaks at δ 192.02 and δ 206.31 due to the chromanone and acenaphthenequinone ring carbonyls, respectively. The mass spectrum of the compound showed a peak at m/z 474.02 (M $^+$), which corresponds to the molecular weight of the compound. Identical results were observed for the other derivatives irrespective of the nature of the substituent present in the arylidene moiety.

Yes a specific specif

Compound	R_1	R_2	R ₃
4a	Н	Н	OCH ₃
4b	CH ₃	OCH ₃	CH ₃
4c	Н	OCH_3	CH ₃
4d	CH ₃	OC_2H_5	CH ₃
4e	OCH_3	OC_2H_5	CH ₃
4f	OCH_3	OCH ₃	$CH=CH(CH_3)$
4g	CH ₃	Н	OCH ₃

As part of our ongoing research, another series of novel spiro-pyrrolizines (7a-f)²²⁻²⁷ were synthesized (Scheme 2, Table 2), which are structurally similar to compounds 4a-g but differ in the N-methyl group where a pyrrolizine moiety replaces the N-methyl group.

Download English Version:

https://daneshyari.com/en/article/5270965

Download Persian Version:

https://daneshyari.com/article/5270965

Daneshyari.com