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In order to select an optimal threshold for image thresholding that is relatively robust to the presence of skew
and heavy-tailed class-conditional distributions, we propose two median-based approaches: one is an
extension of Otsu's method and the other is an extension of Kittler and Illingworth's minimum error
thresholding. We provide theoretical interpretation of the new approaches, based on mixtures of Laplace
distributions. The two extensions preserve the methodological simplicity and computational efficiency of
their original methods, and in general can achieve more robust performance when the data for either class is
skew and heavy-tailed. We also discuss some limitations of the new approaches.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Image thresholding aims topartition an image intoKpredetermined,
mutually-exclusive classes, C1, …, CK, based on K−1 intensity
thresholds. Most commonly, K=2 and the image is partitioned into
the background and the foreground. As an initial procedure for realising
image segmentation, thresholding has a long history of investigation,
motivated by a broad range of practical applications of image analysis
and object recognition. Comprehensive overviews and comparative
studies of image thresholding can be found in [15,4,17,16], for example.

Many, and the most-widely used, approaches to image threshold-
ing are based on analysis of the histogram of intensities in an image,
searching for an optimal threshold t* to divide the histogram into two
parts, C1 with intensities lower than t* and C2 for the remainder.

Among these approaches, twoof themostpopular areOtsu'smethod
[12] and Kittler and Illingworth's minimum-error-thresholding (MET)
method [8]. Otsu's method is adopted as the method for automatic
image thresholding in some free and commercial software, suchasGIMP
(www.gimp.org) andMATLAB (TheMathWorks, Inc.). TheMETmethod
is ranked as the best in a comprehensive survey of image thresholding
conducted by [16].

In image thresholding, determination of an optimal threshold t* is
often based on the estimation of measures of location and dispersion
of intensities in C1 and C2. As withmany other approaches, both Otsu's

method and the MET method use the sample mean and the sample
standard deviation to estimate location and dispersion, respectively.

It is well known that, when the distribution for class Ck is skew or
heavy-tailed, orwhen thereareoutliers in the sample fromCk, themedian
is amore robust estimator of location than themean.When themedian is
chosen for location, the mean absolute deviation from the median
(denoted by MAD) is usually chosen as the estimator of dispersion.

Therefore, in order to select a t* that ismore robust to the presence
of skew and heavy-tailed distributions for Ck than those selected by
Otsu's method and the MET method, we propose in section 2 two
median-based approaches to image thresholding. One of them is an
extension of Otsu's method and the other is an extension of the MET
method; both methods are based on the use of the MAD. Like their
original versions, the two new approaches remain methodologically
simple and computationally efficient.

The relationship between Otsu's method and the MET method has
been investigated by [9,21], among others. [9] shows that both
methods can be derived from maximisation of log-likelihoods based
on mixtures of Gaussian distributions. In section 3, we present
theoretical interpretation of their median-based extensions from the
perspective of the maximisation of log-likelihoods for mixtures of
Laplace distributions.

Some limitations of the median-based approaches are discussed in
section 4 and a summary is made in section 5.

2. Methodology

Each of the N pixels in an image χ is represented by its intensity xi,
i=1,…,N. A threshold t partitions the image into two classes C1(t) and
C2(t), where C1(t)={i: 0≤xi≤ t, 1≤ i≤N} and C2(t)={i: tbxi≤T,
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1≤ i≤N}, in which T is the largest possible intensity, which is 255 for
an 8-bit grey-level image (i.e. xi∈ [0, T]).

The histogram for the image χ, denoted by {h(x)}, can be
constructed by counting the frequencies of the intensities and
dividing them by N, such that ∑x=0

T h(x)=1.

2.1. Otsu's method and its median-based extension

2.1.1. Otsu's method
Otsu's rule [12,9] for defining the optimal threshold t can be

written as

t�O = argmin
t

JO tð Þ =argmin
t

ω1 tð Þs21 tð Þ + ω2 tð Þs22 tð Þ
n o

; ð1Þ

where ω1(t) and ω2(t) are the proportions of pixels representing classes
C1(t) andC2(t)determinedbya threshold t, s1(t) and s2(t) are the (biased)
sample standard deviations for C1(t) and C2(t), respectively, defined as

ω1 tð Þ = ∑
t

x=0
h xð Þ; ω2 tð Þ = ∑

T

x= t +1
h xð Þ = 1�ω1 tð Þ; ð2Þ

s21 tð Þ = ∑
t

x=0

h xð Þ
ω1 tð Þ x� x1 tð Þf g2

� �
; s22 tð Þ = ∑

T

x= t+1

h xð Þ
ω2 tð Þ x� x2 tð Þf g2

� �
;

ð3Þ

in which x1 tð Þ = ∑t
x=0 fxh xð Þ=ω1 tð Þg and x2 tð Þ = ∑T

x= t+1fxh xð Þ=
ω2 tð Þg are the sample means for C1(t) and C2(t), respectively.

2.1.2. A median-based extension
As mentioned in section 1, we envisage that the use of the median

instead of the mean may provide a t that is more robust to the
presence of skew and heavy-tailed distributions for Ck than those
selected by Otsu's method and the MET method. Therefore, a median-
based extension of Otsu's method, derived in a natural way by
substituting theMAD for s2 (not for s for theoretical reasons explained
in section 3), provides a rule for selecting t (denoted by g for
distinctive purposes hereafter) as follows:

g�O = argmin
t

JMO tð Þ = argmin
t

ω1 tð ÞMAD1 tð Þ + ω2 tð ÞMAD2 tð Þf g; ð4Þ

where MADk(t), the mean absolute deviation from the median for
class Ck(t), is given, for k=1, 2, by

MAD1 tð Þ = ∑
t

x=0

h xð Þ
ω1 tð Þ jx−m1 tð Þj

� �
; ð5Þ

MAD2 tð Þ = ∑
T

x= t+1

h xð Þ
ω2 tð Þ jx−m2 tð Þj

� �
; ð6Þ

in which m1(t)=med{xi: i∈C1(t)} and m2(t)=med{xi: i∈C2(t)} are
the sample medians for C1(t) and C2(t), respectively.

2.1.3. Multi-level thresholding
When there aremore than two classes predetermined for an image

(i.e. KN2), it would be better to use more than one threshold to
partition the image into these classes, leading to a multi-level
thresholding problem.

For multi-level thresholding, Otsu's rule for selecting optimal
thresholds t*=(t1*, …, tK−1

* ) can be written as

t�O = argmin
t

∑
K

k=1
ωk tð Þs2k tð Þ

n o
; ð7Þ

where, similarly to the version in section 1,ωk(t) and sk
2(t) are defined

for Ck(t).

Therefore, for multi-level thresholding, the rule underlying Otsu's
median-based extension becomes

g�O = argmin
t

∑
K

k=1
ωk tð ÞMADk tð Þf g: ð8Þ

2.2. The MET method and its median-based extension

2.2.1. The MET method
The MET method [8] selects t* as

t�M = argmin
t

JM tð Þ = argmin
t

ω1 tð Þlog s1 tð Þ
ω1 tð Þ + ω2 tð Þlog s2 tð Þ

ω2 tð Þ
� �

; ð9Þ

where ω1(t), ω2(t), s1(t) and s2(t), defined in Eqs. (2) and (3), are
positive here.

2.2.2. A median-based extension
By analogy with section 1, the rule underlying a median-based

extension of the MET method can be derived by substituting the MAD
for s (not as with section 2 for s2 for theoretical reasons explained in
section 3) as

g�M = argmin
t

JMM tð Þ = argmin
t

ω1 tð Þlog MAD1 tð Þ
ω1 tð Þ + ω2 tð ÞlogMAD2 tð Þ

ω2 tð Þ
� �

:

ð10Þ

2.2.3. Multi-level thresholding
The multi-level-thresholding versions of the MET method and its

median-based extension are readily given by

t�M = argmin
t

∑
K

k=1
ωk tð Þlog sk tð Þ

ωk tð Þ
� �

; ð11Þ

g�M = argmin
t

∑
K

k=1
ωk tð ÞlogMADk tð Þ

ωk tð Þ
� �

: ð12Þ

3. Theoretical interpretation

3.1. Relationship with Laplace mixtures

A straightforward and intuitive interpretation of Otsu's rule, as
shown in Eq. (1), is that it aims to minimise the within-classes
variance JO(t), a measure of dispersion, of the intensity. Correspond-
ingly, an interpretation of the median-based extension of Otsu's
method, as shown in Eq. (4), is that the extension aims to minimise
the within-classes mean absolute deviation from the median JO

M(t),
another measure of dispersion, of the intensity.

Alternativelyand insightfully, asmentioned in section1, [9] shows that
both Otsu's method and the MET method can be derived from
maximisation of log-likelihoods based on mixtures of Gaussian distribu-
tions. The same type of interpretation can be found in [8] from the
derivation of the MET method, although it was not explicitly mentioned
there. Analogously to that, we present a similar theoretical interpretation
of the median-based approaches, from the perspective of the maximisa-
tion of log-likelihoods based on mixtures of Laplace distributions.

Suppose that the intensity of class Ck follows a Laplace distribution,
of which the probability density function p(x|Ck) is defined as

p x jCkð Þ = 1
2βk

exp − jx−αk j
βk

� �
; ð13Þ

where αk is a location parameter and βk is a positive scale parameter.
The maximum likelihood estimator (MLE) of αk is the sample median

632 J.-H. Xue, D.M. Titterington / Image and Vision Computing 29 (2011) 631–637



Download English Version:

https://daneshyari.com/en/article/527102

Download Persian Version:

https://daneshyari.com/article/527102

Daneshyari.com

https://daneshyari.com/en/article/527102
https://daneshyari.com/article/527102
https://daneshyari.com

