Tetrahedron Letters 51 (2010) 503-507

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

From aromatics to conjoined inositols: stereoselective oxyfunctionalization of anthracene

Goverdhan Mehta*, Saikat Sen

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India

ARTICLE INFO

ABSTRACT

Article history: Received 7 September 2009 Revised 26 October 2009 Accepted 13 November 2009 Available online 18 November 2009

Novel 'conjoined' inositols are conceptualized as new structural motifs and an oxyfunctionalization protocol on anthracene is devised in quest for these entities.

© 2009 Elsevier Ltd. All rights reserved.

Inositols 1 or cyclohexane-1,2,3,4,5,6-hexols constitute a biologically important class of cyclitols for which all the possible nine diastereomers, five natural (myo, scyllo, D-chiro, L-chiro and neo) and four synthetic (cis, epi, allo and muco), are known.¹ Myo-inositol 2, the diastereomer most widely prevalent in Nature, forms the structural basis of a number of secondary messengers in eukaryotic cells and is therefore engaged in diverse biological processes. These include insulin signal transduction, control of intracellular calcium ion concentration, maintenance of cell membrane potential, modulation of serotonin activity and gene expression.^{1,2} In addition, clinical studies have revealed that administration of myo-inositol forms a promising line of treatment in patients suffering from psychiatric disorders such as obsessive compulsive-disorder and bipolar depression.³ Among the other naturally occurring inositol isomers, p-chiro-inositol 3 has been effectively employed in management of polycystic ovary syndrome.⁴

The wide-ranging biological functions of inositols have, not surprisingly, generated contemporary interest in their chemistry and stimulated the search for novel analogues for therapeutic applications.⁵ Our group has been actively involved in this quest and we have introduced a number of bicyclic inositol variants, such as annulated inositols **4**⁶ and inosito-inositols **5**,⁷ endowed with a unique structural commonality.⁸ Constructed upon a conformationally locked *trans*-decalin scaffold, these inositol analogues exhibit a high-energy 'unnatural' axial-rich conformation of the cyclitol moiety while retaining its natural configuration. From a synthetic perspective, these structural attributes of **4** and **5** stemmed from the sequence of stereo-controlled oxyfunctionalization steps carried out on the respective aromatic precursors, namely tetralin/indane and naphthalene. The synthetic scheme, delineated in the elaboration of the aromatic nucleus into the inositol moiety in **4** and **5**, appeared amenable for diversification and encouraged us to look into the possibility of utilizing anthracene as a polycyclic carbon scaffold to obtain novel polycyclic entities that can be termed 'conjoined inositols' **6**. Our conceptualization of conjoined inositols was also inspired by the observation of calcium binding affinity and β -galactosidase inhibition activity in several linked inositols **7** (X = O, NH) reported by Hudlicky and co-workers.⁹

Structurally, a conjoined inositol would consist of two or more inositol units fused by hydrocarbon annuli and would therefore provide a means of extending the *trans*-fusion strategy to lock the constituent inositols in novel conformations unattainable by a single methylene, imino or oxido linker (e.g., **7**). In addition to being potential candidates for metal chelating studies, conjoined inositols are expected to exhibit interesting supramolecular

^{*} Corresponding author. Tel.: +91 80 22932850; fax: +91 80 23600283. *E-mail address*: gm@orgchem.iisc.ernet.in (G. Mehta).

^{0040-4039/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.11.054

Scheme 1. Retrosynthetic analysis of conjoined inositols from anthracene.

architecture in the solid state on account of the extensive hydrogen-bonding network inevitably formed by the conformationally locked inositol units which lie in close proximity to each other.¹⁰ In this paper, we report the details of our ongoing efforts en route to **6** which have resulted in the synthesis of some new polyhydroxylated frameworks and tricyclic inositol analogues, constructed on an anthracene platform and endowed with up to nine oxygenated carbon atoms and ten stereocentres.

Retrosynthetic analysis of **6** identified the C_{2h} -symmetric tricyclic tetra-acetoxytetraene **8** as the key intermediate for the symmetrical construction of the two inositol moieties. The tetraene **8** was to be accessed from the tetrol **9** through a bromination–dehydrobromination or an equivalent manoeuver, Scheme 1. A ready access to the tetrol **9** from anthracene **10** has already been described by us.^{10a,d}

Exhaustive Birch reduction of **10** gave 1,4,5,8,9,10-hexahydroanthracene **11**.^{10d,11} Regioselective epoxidation of **11**, followed by acid-mediated ring-opening, furnished the C_{2h} -symmetric tetrol **9**.^{10d,12} Much to our disappointment, bromination of **9** to give **12** instead yielded a product that was too insoluble in any common

Scheme 2. Reagents and conditions: (a) pyH⁺Br₃⁻, CH₂Cl₂, rt.

solvent to be amenable for characterization or further reactions, Scheme 2. Taking recourse to an allylic bromination–dehydrobromination sequence as an alternative approach towards **8** from **9** was also unsuccessful.

Consequently, a redefined synthetic strategy was adopted which focused on a stepwise construction of the two inositol fragments present in 6. Accordingly, controlled mCPBA mediated regioselective epoxidation of 11 afforded the monoepoxide 13, which on acid-catalyzed ring-opening furnished the trans-diol 14.^{12a} Regioselective epoxidation of the tetrasubstituted double bond in 14 led to the epoxydiol 15, Scheme 3. Epoxydiol 15 on monobromination yielded **16** in a stereo- and regioselective manner.^{13,14} Attempted base-mediated double dehydrobromination of 16 afforded a diastereomeric mixture (3:1) of the bicyclic ethers **17**¹⁵ and **18**. The stereostructures of the two 7-oxabicyclo[2.2.1]heptane bearing moieties 17 and 18 were secured on the basis of X-ray crystal structure determination of the latter.¹⁶ Interestingly enough, both **17** and 18, upon treatment with 10% aqueous acetic acid, attained stereochemical convergence to furnish the same triol 19 and thereby rendered the sequence stereoselective. The trans-syn-trans relationship of the two ring junctions in 19 was unambiguously settled in the next step from the crystal structure analysis of the trib-

Scheme 3. Reagents and conditions: (a) *m*CPBA (1 equiv), CH₂Cl₂, -40 °C, 5 min, 68%; (b) 10% AcOH (aq), 60 °C, 2 h, 95%; c) *m*CPBA (1 equiv), CH₂Cl₂, -30 °C, 5 min, 89%; (d) pyH⁺Br₃⁻, CH₂Cl₂, 0 °C, 5 min, 70%; (e) NaOH, moist THF, rt, 2 h, 95% overall (**17:18** = 3:1); (f) 10% AcOH, 50 °C, 12 h, 90% [over two steps, based on the amount of **16** used]; (g) pyH⁺Br₃⁻, CH₂Cl₂, rt, 2 h, 95%; (h) Ac₂O, FeCl₃ (cat.), rt, 2 h, 92%; (i) DBU, DMSO, rt, 60%. [Please note that the ORTEP diagrams are drawn at 30% ellipsoidal probability.]

Download English Version:

https://daneshyari.com/en/article/5271052

Download Persian Version:

https://daneshyari.com/article/5271052

Daneshyari.com