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Gaussian mixture model based on the Dirichlet distribution (Dirichlet Gaussian mixture model) has recently
received great attention for modeling and processing data. This paper studies the new Dirichlet Gaussian
mixture model for image segmentation. First, we propose a new way to incorporate the local spatial informa-
tion between neighboring pixels based on the Dirichlet distribution. The main advantage is its simplicity, ease
of implementation and fast computational speed. Secondly, existing Dirichlet Gaussian model uses complex
log-likelihood function and require many parameters that are difficult to estimate. The total parameters in
the proposed model lesser and the log-likelihood function have a simpler form. Finally, to estimate the pa-
rameters of the proposed Dirichlet Gaussian mixture model, a gradient method is adopted to minimize the
negative log-likelihood function. Numerical experiments are conducted using the proposed model on various
synthetic, natural and color images. We demonstrate through extensive simulations that the proposed model
is superior to other algorithms based on the model-based techniques for image segmentation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Image segmentation is oneof themost difficult and challenging prob-
lem in image processing. Accurately segmented images provide more
and useful information for diagnosis and quantitative analysis. However,
automated segmentation [1,2] is still a very challenging research topic,
due to overlapping intensities and low contrast in images, as well as
noise perturbation. In literature, different methodologies proposed for
image segmentation include mean shift [3,4], clustering methods [5,6],
graph based techniques [7–10], partial differential equations (PDE)
based segmentation techniques [11,12], and region competition [13].

During the last decades, much attention has been given to model-
based techniques [16–22] to model the uncertainty in a probabilistic
manner. In model-based techniques, standard GMM [23,24] is a
well-known method used in most applications. An advantage of
the standard GMM is that it requires a small amount of parameters
for learning. Another advantage is that these parameters can be effi-
ciently estimated by adopting the expectation maximization (EM)
algorithm [25,26] to maximize the log-likelihood function. However,
a major shortcoming of this method is that it does not take into ac-
count the spatial dependencies in the image. Moreover, it does not
use the prior knowledge that adjacent pixels most likely belong to
the same cluster. In this family of Bayesian segmentation methods,

prior probabilities [25] of class membership are considered constant
for every pixel of an image. Thus, the performance of Bayesian seg-
mentation methods is too sensitive to noise and image contrast
levels.

A possible approach to overcome this problem is to impose spatial
smoothness constraints to incorporate the spatial relationships be-
tween neighboring pixels [27]. Recently, several mixture models
based on Markov random field (MRF) for pixel label are proposed in
[28–32]. According to these approaches, prior probabilities capture
spatial information by using a MRF. The primary advantage of this
family of mixture models is that it incorporates spatial information
and reduces complexity and computational cost. Hence, it improves
segmentation results, particularly when image is corrupted by high
levels of noise.

Another family of mixture models based on MRF for pixel label
priors have been successfully applied to image segmentation [33–
37]. Instead of imposing the smoothness constraint on the pixel
label as in the above category, however, these methods aim to impose
the smoothness constraint on the contextual mixing proportions.
Their primary disadvantage, however, lies in its additional training
complexity. For example, the M-step of the EM algorithm in [33,34]
cannot evaluate the prior distribution in a closed form, which there-
fore corresponds to an increase in the algorithm's complexity. In
[33] the gradient projection step was proposed to implement the
M-step. Another reparatory projection step based on a closed form
update equation was introduced [35,36] to guarantee that the prior
probabilities are positive and sum to one.

To eliminate the reparatory projection from the EM algorithm and
to guarantee that the prior probabilities are positive and sum to one, a
segmentation mixture model with spatial constraints was proposed
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in [37]. This model assumes that the prior probabilities follow a
Dirichlet distribution [38,39]. The probability to assign a pixel to the
class is modeled by a discrete multinomial distribution whose param-
eters follow a Dirichlet law [40]. The advantage of this model is that
that each update to the parameters resulting an E-step followed by
an M-step is guaranteed that the prior probability is computed sub-
ject to the probability constraints (positive and sum to one) without
requiring a reparatory projection step. Moreover, the approach leads
to improvements in image segmentation accuracy. However, this
model requires many parameters and a complex log-likelihood func-
tion. In addition, the cost of this method is still quite high, and is not
robust against noise.

In this paper, we propose a new Dirichlet Gaussian mixture model
for image segmentation. Our approach differs from those discussed
above by the following statements. We propose an alternate way of
incorporating local spatial interactions between neighboring pixels
based on Dirichlet distribution and Dirichlet law. Secondly, the exist-
ing Dirichlet Gaussian model requires a complex log-likelihood func-
tion with many parameters. The parameters in the proposed model
are less and the log-likelihood function has a simpler form. Thirdly,
to estimate the parameters of this Dirichlet Gaussian mixture
model, a gradient method is adopted to minimize the negative log-
likelihood function.

The remainder of this paper is organized as follows. In Section 2,
we present a brief introduction of the Dirichlet Gaussian mixture
model, commonly used in the literature for image segmentation. In
Section 3, we describe the details of the proposed method, parameter
estimation, and the relationship between the proposed model with
the existing mixture model. In Section 4, we present the experimental
results followed by conclusions in Section 5.

2. Dirichlet Gaussian mixture model

In this section, we start with a brief review of the Dirichlet Gauss-
ian mixture model. Let xi, i=(1,2,…,N), denote an observation at the
i-th pixel of an image with dimension D. The i-th pixel is character-
ized by the prior probabilities vector πi=(πi1,πi2,…,πiK). Classes are
denoted by (Ω1,Ω2,…,ΩK). The discrete probability label at the i-th
pixel is denoted by zi=(zi1,zi2,…,ziK). According to [37], the discrete
probability label zij, j=(1,2,…,K), is defined as:

zij ¼ 1 IF : pixel xi belongs to class Ωj
0 Otherwise :

�
ð1Þ

In Gaussian mixture model [28–37, 44–51], the density function at
an observation xi is given by:

p xið Þ ¼ ∑
K

j¼1
πijp xið jΩjÞ ð2Þ

where, p(xi|Ωj) is the Gaussian distribution with its own mean μj and
covariance Σj.

p xið jΩjÞ ¼
1

2πð ÞD=2
1

Σj

��� ���1=2 exp −1
2

xi−μ j

� �T
Σ−1
j xi−μ j

� �� �
ð3Þ

Given the density function in Eq. (2), the log-likelihood function is
written in the form.

L Θð Þ ¼ ∑
N

i¼1
log ∑

K

j¼1
πijp xijΩj

� �( )
ð4Þ

As seen from Eq. (4), the pixel xi is considered an independent
sample. The spatial correlation between the neighboring pixels does
not influence the decision process. In order to overcome this problem,

the spatially variant finite mixture model (SVFMM) [33,34] was sug-
gested to incorporate the local spatial information by introducing the
Gibbs function for the priors. The new log-likelihood function is de-
rived as:

L Θð Þ ¼ ∑
N

i¼1
log ∑

K

j¼1
πijp xijΩj

� �( )
þ log p Πð Þ: ð5Þ

For more details of p(Π), please refer to [33,34,36]. The EM algo-
rithm [25,26] is adopted to maximize the log-likelihood function in
Eq. (5) with respect to the parameters Θ=(μj,Σj

−1,πij). However,
the M-step cannot evaluate the prior distribution πij in a closed
form because of the complexity of the log-likelihood function in
Eq. (5). Therefore, for each iteration of the EM algorithm, a reparatory
projection step [33,35,36] is added to the M-step to guarantee that
the prior probabilities are positive and sum to one, which therefore
corresponds to an increase in the algorithm's complexity.

In order to overcome this problem, Dirichlet Gaussian mixture
model has been proposed in [37]. This model assumes that the dis-
crete probability label zij is a random variable following a multinomial
distribution [15,40] with M realizations.

p zið jξiÞ ¼
M!

∏
K

j¼1
zij
� �

!
∏
K

j¼1
ξij
� �zij ð6Þ

where, ξi=(ξi1,ξi2,…,ξiK), i=(1,2,…,N), is the parameter. The proba-
bility ξij satisfies the constraints:

ξij ≥ 0 and ∑
K

j¼1
ξij ¼ 1: ð7Þ

Besides that, the Dirichlet distribution [39] is defined as:

p ξið jαiÞ ¼
Γ ∑

K

j¼1
αij

 !

∏
K

j¼1
Γ αij

� � ∏
K

j¼1
ξij
� � αij−1ð Þ ð8Þ

where, αi=(αi1,αi2,…,αiK), i=(1,2,…,N), is the vector of Dirichlet pa-
rameters for ξi and αij is non negative: αij≥0. Γ(⋅) in Eq. (8) is the
Gamma function. Then, the probability label is given by:

p zið jαiÞ ¼ ∫
1

0

p zið jξiÞp ξið jαiÞdξi: ð9Þ

After some manipulation, we obtain:

p zið jαiÞ ¼
M!

∏
K

j¼1
zij
� �

!

Γ ∑
K

j¼1
αij

 !

Γ ∑
K

j¼1
αij þ zij
� � !∏

K

j¼1

Γ αij þ zij
� �
Γ αij

� � : ð10Þ

We now consider the condition of the discrete probability label zij
in Eq. (1). Substituting Eq. (1) into Eq. (10) and processing with only
one realization (M=1), the prior probabilities for the i-th pixel corre-
sponding to class Ωj become:

πij ¼ p zij ¼ 1jαi

� �
¼ αij

∑
K

k¼1
αik

: ð11Þ
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