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Accuracy, speed and numerical stability are among the major factors restricting the use of Zernike moments
(ZMs) in numerous commercial applications where they are a tool of significant utility. Often these factors are
conflicting in nature. The direct formulation of ZMs is prone to numerical integration error while in the recent
past many fast algorithms are developed for its computation. On the other hand, the relationship between
geometric moments (GMs) and ZMs reduces numerical integration error but it is observed to be computation
intensive. We propose fast algorithms for both the formulations. In the proposed method, the order of time
complexity for GMs-to-ZMs formulation is reduced and further enhancement in speed is achieved by using
quasi-symmetry property of GMs. The existing q-recursive method for direct formulation is further modified
by incorporating the recursive steps for the computation of trigonometric functions. We also observe that
q-recursive method provides numerical stability caused by finite precision arithmetic at high orders of
moment which is hitherto not reported in the literature. Experimental results on images of different sizes
support our claim.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Zernike moments (ZMs) find wide applications in pattern recogni-
tion [1,2], content-based image retrieval [3,4], optical character
recognition [5–8], image reconstruction [9,10], edge detection [11,12],
imagewatermarking [13,14] andpalmprint verification [15]. Among the
many moment shape descriptors, ZMs are observed to be the most
desirable ones for shape description [3] and because of its superior
performance, ZMs descriptor has been accepted by MPEG-7 as a region
based shape descriptor [16]. The superiority of ZMs stems from the fact
that their basis functions are orthogonal thereby eliminating the
redundancy in information content as compared to other orthogonal
radial moments such as pseudo Zernike and orthogonal Fourier–Mellin
moments. They are simple to compute and the absolute values of
moments are invariant to rotation. Translation invariance is achieved by
computingmoments about the centroid of image and scale invariance is
obtained by either normalizing the image [10] or by using a modified
form of ZMs [17]. Theoretically, these moments are rotation invariant
but their discrete implementations exhibit unacceptable variations in
moment values and recently this issue has been solved to a large extent
by computing the moments in polar coordinates [18] and by inter-
polating the moments in moment space [19].

ZMs are implemented in discrete space by approximating the
integration with the summation. The polynomial functions involved
in the basis functions are evaluated at discrete points where the image
function is definedwhich is assumed to be constant over a pixel grid. If
we compute moment of all orders up to a maximum order L for an
image of the size N×N pixels, then the order of time complexity turns
out to be O(N2L3). This is a large order when both N and L are large.
This is obvious from the fact that there are N2 image points at which
the polynomial functions are evaluated. The total number of ZMs is
1
2 L + 1ð Þ L + 2ð Þ. The average number of coefficients of the poly-
nomials is 1

4 L + 4ð Þ or 1
4 L + 3ð Þ for L even or odd. Thus the overall

time complexity is O(N2L3). Further slowdown in speed is caused by
the presence of factorial terms in the coefficients of the polynomials,
power of the radial term i.e. rk, k=0,1,…,L, and the evaluation of
trigonometric functions, cos(mθ) and sin(mθ), m=0,1,…,L. Chong et
al. [20] carry out an extensive survey of fast methods and propose a
newmethod which is popularly known as q-recursive method, where
q represents the repetition term in ZMs. The q-recursive method is
reported to be the best method among all recursive methods. Our
numerical experiments also support the claim of [20]. Further
enhancements in speed are achieved by exploiting the property of
symmetry in the calculation of radial polynomials and trigonometric
functions [17,21,22]. Although symmetry property is used for
trigonometric functions, their evaluation even on an octant of the
unit disc is a time consuming process. The focus of some of the best
methods reported in [20] is to reduce the time complexity of
computing the polynomial terms. Notably, the time complexity of
computing the polynomial terms is reduced from O(L) to O(1), where
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O(1) is independent of L. The factorial terms involved in the
computation of the coefficients of the polynomials are also eliminated.
This yields a significant improvement in speed over the previous fast
methods.

ZMs suffer from two major errors-numerical error and geometric
error [23]. Numerical error consists of two parts. The contribution to
the first part of the error arises because of discretization/quantization
of the image function which is inherent in digital images. The second
part, called numerical integration error, is caused when the double
integration is approximated by double summations and the basis
functions are evaluated at the center of a grid. An approach suggested
by Liao and Pawlak [23] is to use numerical integration for better
approximation. This approach, however, slows down the computation
significantly. Recently, the exact computation of ZMs are proposed by
Kotoulas and Andreadis [24] and by Wee and Paramesran [25]. A
mathematical relationship is used to derive ZMs from geometric
moments(GMs). Since GMs are computed more accurately in a square
domain by assuming constant values of image function over pixel
grids, the relationship provides a better approximation for the ZMs
which reduces numerical error. The effect due to geometric error is
reduced by considering a circle which encloses the image completely
[25]. Another approach to eliminate geometric error is proposed by
Xin, Pawlak and Liao [18] which uses a circular type of image tiling in
polar coordinates. The price paid for that is the presence of
interpolation error, fortunately being smaller order than the geomet-
ric one.

A new real time hardware architecture for the computation of ZMs
using digital filters is presented which outperforms existing software
approaches especially for large images, allowing real time processing
of images up to 4 megapixels [24]. The existing software methods of
GMs-to-ZMs calculation have a time complexity of O(N2L5). However,
when intermediate results are saved in look up tables, the time
complexity reduces to O(L2×max(N2,L3)). In this paper, we propose a
new method which reduces time complexity from O(L2×max(N2,L3))
to O(L2×max(N2,L2)). The proposed time complexity is comparable to
the fast recursive methods whose time complexity is O(N2L2). It will
be shown that the proposed method provides the fastest method for
ZMs calculation when GMs are used.

Another major issue involved with the ZMs calculation pertains to
the numerical instability due to finite precision arithmetic when the
order of moments is large. The non-recursive formulation of ZMs or
the computation of ZMs through GMs suffers from numerical
instability for high orders of moments(N45) and instability is reflected
through the increasing trend of image reconstruction error starting
from moment order 45. A detailed comparative study of numerical
stability of recursive algorithms is performed by Papakostas et al.
[26,27]. Two types of error-overflow and finite precision errors-are
taken into account while analyzing their effects on numerical
behavior of radial polynomials and the coefficients associated with
the recursive steps. It is observed that the finite precision error is of
major concern, since a possible error in a step of the algorithmmay be
accumulated iteration by iteration, resulting to unreliable quantities.
Among the various recursive algorithms, the q-recursive method is
found to be more stable than the other methods. The authors,
however, have not shown the effect of numerical errors on the
accuracy of ZMswhich is reflected through image reconstruction error
for high orders of moment. The major sources of numerical instability
are attributed with the high order factorial terms and high order of
radial polynomials. An arbitrary precision arithmetic is used to
accurately compute ZMs at high orders [28], albeit at the cost of
high computation time. The authors have, however, shown results for
moment orders up to 70. In an attempt to compute ZMs accurately
and preserve rotation invariance, Xin et al. [18] compute ZMs in polar
coordinates and show that their method provides numerical stability
at high orders of moment. This method is suitable for inherently
circular images, e.g., images appearing in ophthalmology. During the

course of the implementation of several algorithms, we observed that
the q-recursive method [20] is quite stable and its stability increases
with the size of image. Our observations are in line with the findings
reported by [26,27]. For an image of the size 64×64 pixels it provides
numerical stability for moment orders up to 180, and for
512×512 pixels image the stability is exhibited even for moment
orders up to 450. Thus q-recursive method is not only one of the
fastest methods but stable too. We also observe that the q-recursive
method is faster than the method based on the relationship between
GMs and ZMs for large orders of moment. We further enhance its
speed by developing recurrence relations for the evaluation of
trigonometric functions.

The above discussions and observations set the directions for our
proposed work as follows:

(i) Numerical error in ZMs is reduced by using the relationship of
GMs and ZMs. The computation cost of existing methods based
on this relationship is very high. No attempt has previously
been made to derive fast algorithm for ZMs based on this
approach. We propose a fast method for the same.

(ii) Fast method such as q-recursive method with symmetry/
quasi-symmetry property exists for the direct formulation of
ZMs. However, it suffers from numerical error. Apart from
being fast, we discuss its numerical stability at high orders of
moment. In addition, we propose a faster method for ZMs by
developing recursive relations for trigonometric functions. We
call this method qθ-recursive method.

The paper does not address the issues of discretization/quantiza-
tion error and robustness to noise.

The rest of the paper is organized as follows. Section 2 presents an
overview of ZMs formulation for the direct approach and for the
approach based on a mathematical relationship between GMs and
ZMs. Section 3 deals with the proposed fast algorithms based on the
two approaches. Pseudo codes are also presented which facilitate the
understanding of the algorithms. Numerical experimental results are
elaborated in Section 4 followed by conclusions in Section 5.

2. Zernike moments (ZMs)

2.1. Radial polynomial (direct) form of ZMs

ZMs of order n and repetition m (m and q are used interchange-
ably) of an image function f(x,y) in two dimensions over a unit disc are
characterized by the equation:

Znm =
n + 1

π
∬

x2 + y2b=1

f x; yð ÞV�
nm x; yð Þdxdy ð1Þ

where the image function is defined over a square domain N×N and
Vnm* (x,y) is the complex conjugate of the complex polynomials Vnm(x,
y) given by

Vnm x; yð Þ = Rnm rð Þe jmθ ð2Þ

where, r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
;0≤ r≤ 1; j =

ffiffiffiffiffiffiffiffi
−1

p
; n≥ 0; jm j ≤ n; n−m = even, and

θ = tan−1ð yx Þ ð3Þ

The angle θ is between 0 and 2π and is measured w.r.t. x-axis in
counter clockwise direction. The Zernike real valued radial poly-
nomials Rnm(r) are given by

Rnm rð Þ = ∑
n

k= jm j ;
n−k= even

Bnmkr
k ð4Þ
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