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Vector quantization (VQ) for image compression requires expensive time to find the closest codevector in
the encoding process. In this paper, a fast search algorithm is proposed for projection pyramid vector
quantization using a lighter modified distortion with Hadamard transform of the vector. The algorithm uses
projection pyramids of the vectors and codevectors after applying Hadamard transform and one elimination
criterion based on deviation characteristic values in the Hadamard transform domain to eliminate unlikely
codevectors. Experimental results are presented on image block data. These results confirm the effectiveness
of the proposed algorithm with the same quality of the image as the full search algorithm.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recent developments in multimedia and computer networks have
resulted in widespread use of electronic file transmissions to replace
traditional postal mail. However, due to the large size of multimedia
data files and the bandwidth restrictions of computer networks, data
transmission is inefficiency. Data can be compressed to reduce its size,
improving the efficiency of its size, improving the efficiency of its
transmission across computer networks. So far, vector quantization
(VQ) [8,9,16] has long been a well-celebrated lossy compression
technique that guarantees the achievement of a satisfactory balance
between image quality and compression ratio [5]. At the same time,
because of its simple and easy implementation, VQ has been very
popular in a variety of research fields such as speech recognition and
face detection [7]. Even in real-time video-based events detection [15]
and the anomaly intrusion detection systems [34], VQ has been
exploited recently to learn and collect some representative patterns
and then to identify similar feature vectors or detect unusual
activities.

VQ can be defined as a mapping Q from a k-dimensional Euclidean
space Rk to a finite set Y={y1,y2,...,yN} of vectors in Rk called the
codebook. Each representative vector yi in the codebook is called a
codevector. Traditionally, VQ can be divided into three procedures:
codebook design, encoding and decoding. The codebook design
procedure is executed before the other two procedures for VQ. The
goal of the codebook design is to construct a codebook Y from a set of
training vectors using clustering algorithms like the generalized Lloyd

algorithm (GLA) [16]. This codebook is used in both the image
encoding/decoding procedures. In the encoding procedure, for each
training vector x, the index i of the closest codevector to the vector x
is found. The codevector yi must give minimum distortion and satisfy
d2(x,yi)bd2(x,yj), { j=1,2,...,N;i≠ j}, where

d2ðx; yiÞ = ∑
k

j=1
ðxj−yijÞ2; ð1Þ

so the codevector yi now represents the vector x. The decoding
procedure is simply a table look-up procedure that uses the received
index i to deduce the reproduction codevector yi, and then uses yi to
represent the input vector x.

Using the squared Euclidean distance criteria in Eq. (1), the
computational cost of finding the best suitable codevector in encoding
and codebook design imposes practical limits on the codebook size N
and the vector dimension k. When N and/or k become larger, the
computation complexity problem occurs for full codebook search.
Researchers have proposed numerous fast search approaches to speed
up codebook matching process, including standard VQ, tree structure
VQ (TSVQ) [3,23–25], and lattice VQ (LVQ) [2,19,22,32]. The standard
VQ algorithms can be classified into three classes. The first class uses
one or more constraint inequality in the spatial domain, the second
class exploits the topological structure of vectors and the last one
utilizes a transformed constrain inequality.

There are many algorithms follow the first class as in the
following: An algorithm for fast nearest neighbor search presented
by Orchard [20] precomputes and stores the distance between each
pair of codevectors. Given an input vector x, the current best
codevector yb, and a candidate codevector yj, if d(x,yj)≤d(x,yb), then
d(yj,yb)≤2d(x,yb). Graphically, this constrains the search areawithin a
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sphere centered on the current best codevector, with a radius of twice
the smallest distortion calculated so far. The equal-average nearest
neighbor search (ENNS) algorithm [10] uses the mean as a constraint
value to reject impossible codevectors. The equal-average equal-
variance nearest neighbor search (EENNS) [13] uses the mean and the
variance as two individual inequalities to reduce the search area and
reject the codevectors that are not contained in this area. The
improved algorithm termed (IEENNS) [1] uses the mean and the
variance in one inequality to reduce the search area. Wu and Lin [33]
presented a new kick out condition based on the norms of
codevectors. Two lossy design methods were described in [27,28]
using a hyperplane partitioning rule. Lu and Sun [18] presented the
equal-average equal-variance equal-norm nearest neighbor search
(EEENNS) algorithm, which uses three significant features to reject
many impossible codevectors. A fast codebook design algorithm for
entropy constrained vector quantization was introduced in [29] using
a new constraint called the angular constraint.

In the second class, the algorithms exploit the topological structure
of codevector to avoid unnecessary codevector matching procedure.
Lee and Chen [14] proposed a fast search algorithm based on themean
pyramid search (MPS) for codebook design using the squared
Euclidean distance as distortion measure. This algorithm uses the
mean pyramids of codevectors to reject many unmatched codevec-
tors, thus drastically speeds up the search process in encoding and
codebook design. Pan et al. [21] improved the encoding search process
by adopting the variance pyramid in addition to the mean pyramid
using the squared Euclidean distance as the distortion measure. The
method uses a virtual distance between the input vector and the
tested codevector at any level of the pyramid structure. This distance
consists of the squared mean distance and the variance distance. Song
and Ra [26] provided another technique using L2-norm pyramid of
codevectors. They used a modified distortion measure in the
multilevel L2-norm pyramid which is heavy frommanymultiplication
operations. In [30], a high-speed closest search algorithm for VQ using
the projection pyramid of the vectors was established. In this
algorithm, a multilevel inequality for a simple and much lighter
modified distortion measure was derived based on the pyramids of
codevectors. By employing this inequality the procedures of code-
vector search for encoding or codebook design are speeded up.
Another fast algorithm for vector quantization was introduced in [31]
based on the mean pyramid and Hadamard transform using the
squared Euclidean distance as distortion measure.

In the third class, there are also some transform domain-based
algorithms, for example, wavelet transform based partial distortion
search (WTPDS) algorithm [11] which uses wavelet transform and
Hadamard transform based partial distortion search (HTPDS) [17].
Also, Jiang et al. [12] introduced another algorithm which uses
Hadamard transform based on norm-ordered search (NOS). Another
technique based on Hadamard transform was introduced in [6] which
is efficient in the case of high dimensional.

In this paper, a high-speed closest codevector search algorithm for
VQ is presented. The proposed algorithm is developed by combining
the idea of the projection pyramid with the Hadamard transform to
minimize the dimension of the vectors in the Hadamard projection
pyramid levels. This minimization will reduce the computation cost
required to construct theHadamardprojectionpyramid.Anewmultilevel
inequality is derived for a new lighter modified distortion based on the
pyramid structure of the codevectors. By employing this inequality,many
codevectors will be rejected. Hence, many distortion computations will
be saved and the procedures of encoding can be speeded up.

The paper is organized as follows. In Section 2, somebasic definitions
and properties as a guide to understand our algorithm are introduced.
In Section 3, some related previous work are presented and analyzed.
In Section 4, the proposed algorithm is discussed in detail. The
experimental results are given in Section 5. Section 6 concludes the
paper.

2. Basic definitions and properties

In this section, we introduce some basic definitions and properties
about Hadamard transform domain which is the basis of improved
Hadamard transform based fast codevector search algorithm [6] and
the pyramid data structure which is the basis of all pyramid search
algorithms [4].

2.1. Hadamard transform

Hadamard transform (also known as the Walsh–Hadamard
transform) Hm is a squared matrix of size 2m×2m and its elements is

1 or −1, with H1 = 1 1
1 −1

� �
and Hm = Hm−1 Hm−1

Hm−1 −Hm−1

� �
. For any

vector x with k-dimension, where k=2m, (m≥0), the Hadamard
transformed vector x ̂, is given by:

̂x = Hmx: ð2Þ

And the Hadamard transformed deviation of the vector x ̂̂ can be
defined as:

V ̂x =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

i=2
̂x2
i

s
: ð3Þ

Note that Eq. (3) does not take the first component of the vector x̂
into account as in [6].

From the definition of Hadamard transform, it is clear that the first
component of the transformed vector x̂ is equal to the sum of all
components in the original vector x, because all values in the first row
of Hadamard matrix are ones.

2.2. Pyramid data structure

Image pyramid data structure was originally developed for image
coding by Burt and Adelson [4]. In this data structure, an image is
represented hierarchically with each level corresponding to a reduced-
resolution approximation. Given an image Zn of size 2n×2n, its pyramid
can be defined as a sequence of matrices {Z0, Z1,..., Zr−1, Zr, Zr+1,..., Zn},
where an image Zr−1 in level r−1 has a size of 2r−1×2r−1 and is a half
reduced-resolution version in both directions of Zr. Note that Z0 has only
one pixel. A pyramid data structure can be formed by successively
performing appropriate operations over 2×2 neighboring pixels in the
next lower level. Therefore, the value of a pixel zr−1(i, j) in level r−1 is
obtained from the values of the corresponding 2×2 neighboring pixels
zr(2i−1, 2j−1), zr(2i, 2j−1), zr(2i−1, 2j) and zr(2i, 2j) in level r.

There are many types of image pyramids, for example, the mean
pyramid [14] or the L2-norm pyramid [26]. A general description of
the pyramid data structure employing the idea of the projection is
given by Eq. (4). The vector composed of corresponding values of 2×2
neighboring pixels is projected to a reference vector ũ1=(1,1,1,1) in
the 2×2-dimensional space. The pyramid pixel value zr−1(i, j) in level
r−1 is:

zr−1ði; jÞ =
1
α

∑
1

g=0
∑
1

h=0
ðzrð2i−g; 2j−hÞÞβ

" #1
β

=
1
α

ũ1ðzβr ð2i−1;2j−1Þ; zβr ð2i;2j−1Þ; zβr ð2i−1; 2jÞ; zβr ð2i; 2jÞÞT
� �1

β;

ð4Þ

where (⋅)T denotes the vector transpose and α, β are two constants to
define the kind of the projection and the pyramid structure. The
mean pyramid structure [14] and the L2-norm pyramid structure [26]
are special cases of this pyramid structure.When α=4 and β=1, the
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