Tetrahedron Letters 54 (2013) 4487-4490

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

TiCl₄ mediated preparation of (*E*)-non-conjugated homoallylic alcohols with α -substituted allylsilanes

etrahedro

Aymara M. M. Albury, Michael P. Jennings*

Department of Chemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, United States

ARTICLE INFO

ABSTRACT

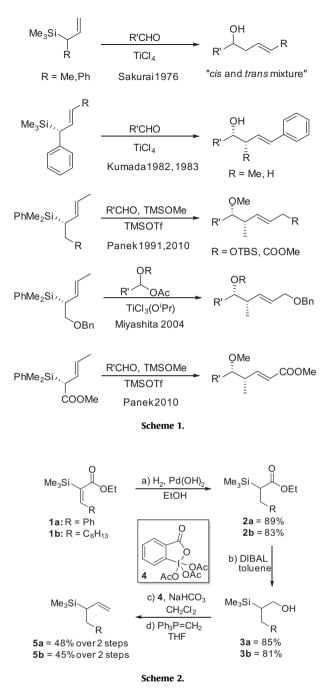
Article history: Received 17 May 2013 Revised 5 June 2013 Accepted 11 June 2013 Available online 18 June 2013

Keywords: Allylation Allylsilane Olefination Natural products Diastereoselective synthesis investigated. It has been shown that these reagents readily allow for good yields and high to excellent diastereoselectivities (up to >20:1) for a series of aldehydes, thereby providing a means of preparing non-conjugated (E)-homoallylic alcohols in a single step. © 2013 Elsevier Ltd. All rights reserved.

The allylation of various aldehydes with α -substituted allylsilanes in the presence of TiCl₄ has been

The Lewis acid mediated reaction of allylsilanes with carbonyl compounds has provided the synthetic chemist with a remarkable tool for the regio- and stereospecific preparation of homoallylic alcohols.¹ In 1976. Sakurai and co-workers reported that two α -substituted allylsilanes reacted with an aliphatic aldehyde under Lewis acidic conditions to afford the γ -substituted linear homoallylic alcohols as a non-defined cis- and trans-mixture of olefin geometry.² Later, Kumada investigated the addition of the chiral phenyl α-substituted allylsilane to a variety of aliphatic aldehydes and observed solely the *E* stereochemistry of the conjugated olefin product.^{3,4} Subsequently, Panek and Miyashita have shown that substituted chiral crotylsilanes react with acetals to provide high levels of dr and er for the newly formed stereocenters coupled with selective (*E*)-olefin geometry formation of the α -substituted homoallylic ether products.^{5,6}

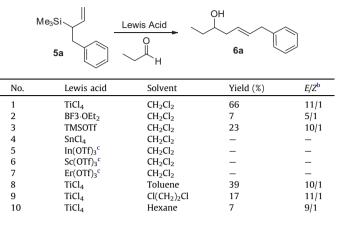
While the synthesis of (*E*)-conjugated α -substituted homoallylic alcohols (or ethers) has been disclosed by means of substituted allylsilanes, surprisingly the synthesis of non-conjugated (E)-homoallylic alcohols derived from α -substituted allylsilane reagents has yet to be fully investigated as described in Scheme 1.⁷ In order to obtain such said products prior to this investigation utilizing allylsilanes, further functionalization of the given terminal alkene resident in an unsubstituted homoallylic alcohol would have to be conducted.⁸ A couple of options for this additional functionalization include a cross metathesis with another type I olefin or olefination of the resultant aldehyde (by means of oxidative cleavage of the terminal alkene) via a Julia-Kocieński protocol. Unfortunately, both of these mentioned processes have significant disadvantages.


For example, the terminal olefin moiety of a homoallylic alcohol typically undergoes a non-chemo and diastereoselective crossmetathesis reaction with another type I alkene to afford a low yield of product with modest E/Z selectivities.⁹ Likewise, the Julia-Kocieński olefination would require a minimum of four reaction processes commencing with protection of the alcohol moiety, oxidative cleavage of the terminal alkene, olefination and a final deprotection to unmask the alcohol functional group.¹⁰ Herein, we wish to report on a systematic study leading to the successful direct preparation of non-conjugated (E)-homoallylic alcohols in one step from the parent aldehyde via a Lewis acid mediated addition of α -substituted allylsilanes.

As shown in Scheme 2, preparation of the substituted allylsilanes 5a and 5b utilized vinyl silanes 1a and 1b, which were synthesized based on our previous report.¹¹ Thus, treatment of 1a and **1b** with Pearlman's catalyst [Pd(OH₂)] under an atmosphere of H₂ in EtOH readily provided the saturated α -silvl esters **2a** and 2b in 89% and 83% yields, respectively.¹² Initially, we had hoped to partially reduce the ester moieties of **2a** and **2b** with DIBAL to the corresponding aldehydes. However, we consistently observed over reduction of the carbonyls and after reaction optimization obtained alcohols **3a** and **3b** in yields of >80%. An ensuing oxidation of 3a and 3b with Dess-Martin Periodinane (4) furnished the desired, yet chromatography unstable α -silyl aldehydes which were used directly for the subsequent Wittig olefination. Accordingly, the crude aldehydes were added to the preformed methylene ylide

^{*} Corresponding author. Tel.: +1 (205) 348 0351; fax: +1 (205) 348 9104. E-mail address: jenningm@bama.ua.edu (M.P. Jennings).

^{0040-4039/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.06.047



(generated from $Ph_3P^+-CH_3 Br^-$ and nBuLi) and afforded allylsilanes **5a** and **5b** in modest yields of 48% and 45% over two steps from **3a** and **3b**. It is worth noting that the elimination of $Ph_3P=O$ was preferential to that of a Peterson type olefination with a loss of TMSOH.¹³

With the desired allylsilanes in hand, we proceeded to investigate the Lewis acid-mediated addition of **5a** to propanal under a variety of reaction conditions as shown in Table 1. We initiated the inquiry with a couple of objectives in mind. First, we wanted a process that would provide solely the linear homoallylic alcohol and not the ether product (via the acetal or intramolecular cyclization to afford the substituted THF ring) as developed by Panek.¹⁴ Secondly, the yield and E/Z selectivity must mirror or be greater than that of any multi-step approach. With these goals in mind, we initiated our examination by scanning a variety of Lewis Acids. As shown in Table 1, the slow addition of 1.3 equiv of TiCl₄ to a

Table 1

Allylation of propanal with allylsilane ${\bf 5a}$ in the presence of different lewis acids and solvents $^{\rm a}$

 $^{\rm a}$ Reaction ran with 1 equiv of 5a,~1.3 equiv of Lewis acid, and 1.3 equiv of propanal for 3 h at $-78~^{\circ}{\rm C}.$

^b *E/Z* ratio determined by ¹H NMR (500 MHz) from the purified reaction mixture. ^c Lewis acid was dissolved in THF before being added to the reaction.

solution of **5a** and propanal (1.3 equiv) in CH_2Cl_2 at -78 °C for 3 h provided homoallylic alcohol **6a** in 66% yield with an *E/Z* ratio of 11/1. Exchanging the Lewis acid TiCl₄ for BF₃·OEt₂ dramatically reduced both the yield of **6a** to 7% and diastereoselectivity (5/1) of the newly formed olefin moiety. Similarly, the usage of TMSOTf provided a low 23% yield of **6a**, however the *E/Z* ratio was restored to ~10/1 favoring the *E*-alkene. It is worth noting that under both reaction conditions utilizing BF₃·OEt₂ and TMSOTF, the major product was the substituted THF ring as reported by Panek, Woerpel and Roush.¹⁵ Surprisingly, when we examined SnCl₄ in place of TiCl₄ little to no homoallylic alcohol **6a** was isolated, but complete decomposition of allylsilane **5a** was observed. Correspondingly, the utilization of rare-Earth triflate salts [In(OTf)₃, Sc(OTf)₃ and Er(OTf)₃] as Lewis acids led to limited product formation (<5%) and quantitative re-isolation of starting material **5a**.

Armed with the knowledge that TiCl₄ was the optimal Lewis acid and provided **6a** with the greatest yield (66%) and *E/Z* selectivity (11/1), we sought to further define the reaction scope by examining a potential solvent effect. We exchanged CH₂Cl₂ for a variety of other non-polar solvents (toluene, hexane, and ClCH₂CH₂Cl) and observed significantly reduced yields (7–39%) while maintaining the olefin diastereoselectivity of $\geq 9/1$ for the *E*-alkene. It was a little unexpected that ClCH₂CH₂Cl afforded such a low yield of 17% compared to that of CH₂Cl₂ (66%). With the reaction conditions (1.3 equiv of TiCl₄) in hand as described in Table 1, we desired to further investigate the scope and limitations of both **5a** and **5b** as allylating reagents with an assortment of aldehydes.

Initial treatment of the TBDPS protected aldehyde¹⁶ (derived from 1,3-propanediol) with **5a** in the presence of 1.3 equiv of TiCl₄ provided alcohol **7a** in ~50% yield with an *E/Z* ratio of 13/1 as determined by ¹H NMR while a significant amount of aldehyde remained unreacted (~35–40%). Thus, addition of another 0.2 equiv of TiCl₄ and a second equiv of silane **5a** readily promoted the complete consumption of the aldehyde and afforded **7a** in 82% yield with an *E/Z* ratio of 16/1 as described in Table 2. Based on this improvement in yield and diastereoselectivity of the newly formed alkene, we carried out the remaining allylations with both **5a** and **5b** (2 equiv) utilizing 1.5 equiv of TiCl₄. Hence, treatment of propanal and **5a** with 1.5 equiv of TiCl₄ furnished **6a** in a greater yield of 77% with an increased *E/Z* ratio of 12/1. Under identical reaction conditions, the addition of **5b** to propanal afforded homoallylic alcohol **6b** with

Download English Version:

https://daneshyari.com/en/article/5271502

Download Persian Version:

https://daneshyari.com/article/5271502

Daneshyari.com