Tetrahedron Letters 54 (2013) 2296-2302

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

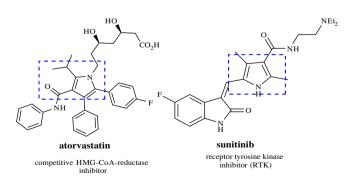
journal homepage: www.elsevier.com/locate/tetlet

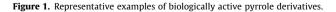
Catalyst-free four-component protocol for the synthesis of substituted pyrroles under reusable reaction media

H. M. Meshram^{*}, B. Madhu Babu, G. Santosh Kumar, Pramod B. Thakur, Vikas M. Bangade

Organic Chemistry Division-I, Natural Product Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500 007, India

ARTICLE INFO


Article history: Received 16 October 2012 Revised 22 January 2013 Accepted 24 January 2013 Available online 30 January 2013

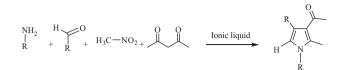

Keywords: lonic liquid [Hbim]BF₄ Four-component reaction Pyrrole Catalyst-free reaction Reusable media

ABSTRACT

An efficient four-component protocol is described for the synthesis of diversely functionalized pyrroles under catalyst-free condition by using ionic liquid as a reaction media. The developed method is mild, high yielding, and amenable for a variety of amines as well as aldehydes. Moreover the procedure is of environmentally benign nature in which ionic liquid 1-*n*-butylimidazolium tetrafluoroborate [Hbim]BF₄ is used as a reusable and efficient reaction medium without using any additional catalyst or promoter. © 2013 Published by Elsevier Ltd.

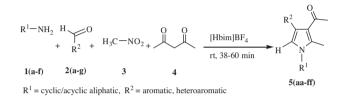
Pyrrole is an important core unit found in many natural products,¹ pharmaceutically active compounds, (Fig. 1) and electrical conducting materials.² In addition to this, pyrrole derivatives are known to possess a wide range of biological activities such as antitumor, anti-inflammatory, antibacterial, antioxidant, and antifungal.³ Due to such prominence of pyrroles, numerous methods^{4–10} have been reported for the synthesis of these molecules where the most commonly used approaches include Hantzsch⁴, Knorr⁵ and Paal–Knorr⁶ syntheses. In an alternate method, the synthesis of pyrrole has been accomplished by the reaction of bromonitrostyrenes with enamines.¹¹ Recently a four-

* Corresponding author. Tel.: +91 40 27191643; fax: +91 40 27193275. *E-mail address*: hmmeshram@yahoo.com (H.M. Meshram).


0040-4039/\$ - see front matter @ 2013 Published by Elsevier Ltd. http://dx.doi.org/10.1016/j.tetlet.2013.01.098 component reaction of amines, aldehyde, diketone, and nitroalkane is reported to give functionalized pyrroles^{12a,b} by using FeCl₃,^{12a} and NiCl₂·6H₂O.^{12b} However this method possesses certain drawbacks such as the use of toxic metal catalysts and harsh reaction conditions. Moreover these methods use non-ecofriendly organic solvents and give a moderate yield of product even after a longer reaction time. In this regard, the development of an efficient method for the synthesis of pyrrole derivatives under mild reaction condition is highly desirable.

Nowadays, sustainable processes are highly in demand in the chemical industry.¹³ The 'process efficiency' concept is not only related to a high chemical yield, but also to minimize the use of large amounts of harmful organic reagents, solvents, catalyst, and undesired chemical waste.¹⁴ In this context, ionic liquids have been emerging as a mild and environmentally benign reaction medium in modern chemical synthesis.¹⁵ Also ionic liquid promotes the different organic transformations without the use of any additional catalyst or solvent.¹⁶

In a recent article, Jana et al. found that, β -enaminone and β nitrostyrene are key intermediates in the pyrrole synthesis^{12b} and our literature survey revealed that the synthesis of these key intermediates can be achieved in ionic liquid.^{17a,b} Keeping this in mind, we envisioned the catalyst-free four-component reaction of amines, aldehyde, diketone, and nitroalkane to give functionalized pyrroles by using ionic liquid as a reaction medium (Scheme 1). To the best of our knowledge there is no report concerning the catalyst-free four-component synthesis of pyrroles. Hence, as a part of our¹⁶ ongoing interest in the application of ionic liquids for the synthesis of biologically active molecules, herein we wish



Scheme 1. Envisioned reactions of amines, aldehyde, diketone, and nitroalkane for the synthesis of substituted pyrroles under catalyst-free condition by using ionic liquid.

Figure 2. Chemical structure of 1-*n*-butylimidazolium tetrafluoroborate [Hbim]BF₄ ionic liquid.

Scheme 2. Synthesis of substituted pyrroles under catalyst-free condition by using [Hbim]BF₄ as a reaction medium.

to report the catalyst-free, mild, and high yielding four component protocol for the synthesis of diversely functionalized pyrroles by using ionic liquid 1-*n*-butylimidazolium tetrafluoroborate [Hbim]BF₄ (Fig. 2) as a reusable reaction medium.

As a model reaction we first attempted the reaction of cyclopropylamine **1a** (1.2 mmol), benzaldehyde **2a** (1 mmol), acetylacetone 4 (1 mmol), and nitromethane **3** (1 mmol) in 5 mL ionic liquid 1-*n*butylimidazolium tetrafluoroborate [Hbim]BF₄ (Scheme 2) and progress of the reaction was monitored continuously by TLC. The reaction proceeded smoothly within 52 min at room temperature to give substituted pyrrole **5aa** which was confirmed by analyzing spectral data (Table 2, entry 1). The formation of the desired product was also confirmed by comparison with the spectral data obtained for a sample prepared by one of the available literature procedures.^{12a} The above observations reveal that the substituted pyrrole can be obtained by four-component reaction of amines, aldehyde, diketone, and nitroalkane in ionic liquid under catalyst-free condition.

These encouraging observations promoted us to screen the different imidazole based ionic liquids to study the model reaction in detail. We have studied model reaction in different ionic liquids such as, 1-n-butylimidazolium tetrafluoroborate [Hbim]BF4, 1-butyl-3-methylimidazolium tetrafluoroborate [bmim]BF4, 1-butyl-3methylimidazolium hexafluoro phosphate [bmim]PF₆, and 1ethyl-3-methylimidazolium tetrafluoroborate [emim]BF₄. After this extensive screening, we found ionic liquid [Hbim]BF4 as a most suitable reaction medium for model reaction in terms of reaction time and isolated yield (Table 1, entry 1). We found that the reaction worked very well in ionic liquid [Hbim]BF₄ without using additional catalyst and gave very high yields of product within a shorter reaction time at rt as compared to the previous methods.^{12a,b} The exact reason for this is not well understood, but we assume that, due to the distinctive acidity and polarity associated with [Hbim]BF₄, it plays a dual role as catalyst as well as solvent and hence resulted in a higher yield of product. As a part of study, we have also performed control reaction under a neat reaction condition; however the desired product was formed in very trace amount even after strengthening the reaction time up to 24 h (Table 1, entry 6). On the basis of above study we have chosen the use

 Table 1

 Screening of reaction media^a

U		
Entry	Reaction media	Time (min)
L	[Hbim]BF ₄	52
2	[Hbim]BE	90

2	[Hbim]BF ₄	90	86	
3	[bmim]BF ₄	90	78	
4	[bmim]PF ₆	90	71	
5	[emim]BF ₄	90	58	
6	-	24 h	trace ^c	

^aReaction condition: cyclopropylamine **1a** (1.2 mmol), benzaldehyde **2a** (1 mmol), acetylacetone **4** (1 mmol), and nitromethane **3** (1 mmol) in 5 mL ionic liquid. ^bIsolated yield.

^cUnder neat reaction condition.

of 5 mL [Hbim]BF₄ as an optimized reaction condition for the synthesis of substituted pyrrole **5aa** by catalyst-free four-component reaction of cyclopropylamine **1a**, benzaldehyde **2a**, acetylacetone **4**, and nitromethane **3** at rt under reusable reaction media (Table 1, entry 1).

Further, for the general validity of the reaction, the optimized condition^{18,19} was tested on several structurally varied amines as well as aldehydes and the results are summarized in Table 2. The reaction of benzylamine (entries 12-14) and 2-phenylethylamine (entries 17-23) underwent smoothly in the standard reaction condition to furnish the desired product in a high yield. It is worthy to mention that the procedure is also applicable for cyclicamines like cyclopropylamine and cyclohexylamine (entries 1-7 and 8-11, respectively) and alkynylamines like propargylamine (entries 24-29) which were totally unexplored in the pyrrole synthesis. The efficiency of the reaction was further strengthened by the participation of heterocyclic aldehyde in this four-component reaction (entries 5, 10, 21, 28). For example the reaction of cyclopropylamine **1a** with furfural **2e** also proceeded same way and afforded corresponding product **5ae** in good yield (entry 5). Other diversely functionalized aldehydes also participated effectively in the reaction under optimized condition (Table 2). In our protocol, other different functional groups such as halides, hydroxyl, methoxy, acetyl, nitro, and alkynyl remained unaffected and the exclusive formation of pyrrole derivative was observed. It is worthy to mention that, in the present study the scope of the developed method was tested on new substrates and hence all obtained substituted pyrrole derivatives are new compounds.

Our next approach was to study the scope of reusability of [Hbim]BF₄ for this four-component reaction. Hence, after completion of the reaction, the reaction mixture was isolated from [Hbim]BF₄ by simply extracting with ether (3×15 mL). Then the [Hbim]BF₄ was dried under vacuum and used for subsequent reactions. We reused [Hbim]BF₄ up to three cycles for this four component reaction and did not find any substantial loss in the catalytic activity of [Hbim]BF₄ (first cycle: Table 2, entry 7, second cycle: Table 2, entry 19, third cycle: Table 2, entry 24).

The tentative mechanistic pathway based on one of the literature reports^{12a} is proposed for the catalyst-free synthesis of functionalized pyrroles by using ionic liquid as a reaction medium as shown in Scheme 3. We reasoned that the reaction proceeded to form β -enaminone by the condensation of acetylacetone with amine.^{17a} This reactive β -enaminone attacked on in situ generated β nitro styrene^{17b} and forms five membered cyclic intermediate **A**. Finally the cyclic intermediate undergoes aromatization by the elimination of water molecule with the aid of ionic liquid and gives substituted pyrrole derivative.

Yield^b(%)

Download English Version:

https://daneshyari.com/en/article/5271684

Download Persian Version:

https://daneshyari.com/article/5271684

Daneshyari.com