
Approximate graph edit distance computation by means of bipartite graph matching

Kaspar Riesen *, Horst Bunke
Institute of Computer Science and Applied Mathematics, University of Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland

a r t i c l e i n f o

Article history:
Received 15 October 2007
Received in revised form 1 February 2008
Accepted 9 April 2008

Keywords:
Graph based representation
Graph edit distance
Bipartite graph matching

a b s t r a c t

In recent years, the use of graph based object representation has gained popularity. Simultaneously,
graph edit distance emerged as a powerful and flexible graph matching paradigm that can be used to
address different tasks in pattern recognition, machine learning, and data mining. The key advantages
of graph edit distance are its high degree of flexibility, which makes it applicable to any type of graph,
and the fact that one can integrate domain specific knowledge about object similarity by means of spe-
cific edit cost functions. Its computational complexity, however, is exponential in the number of nodes of
the involved graphs. Consequently, exact graph edit distance is feasible for graphs of rather small size
only. In the present paper we introduce a novel algorithm which allows us to approximately, or subop-
timally, compute edit distance in a substantially faster way. The proposed algorithm considers only local,
rather than global, edge structure during the optimization process. In experiments on different datasets
we demonstrate a substantial speed-up of our proposed method over two reference systems. Moreover, it
is emprically verified that the accuracy of the suboptimal distance remains sufficiently accurate for var-
ious pattern recognition applications.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graph matching refers to the process of evaluating the struc-
tural similarity of graphs. A large number of methods for graph
matching have been proposed in recent years [1]. The main advan-
tage of a description of patterns by graphs instead of vectors is that
graphs allow for a more powerful representation of structural rela-
tions. In the most general case, nodes and edges are labeled with
arbitrary attributes. One of the most flexible methods for error-tol-
erant graph matching that is applicable to various kinds of graphs
is based on the edit distance of graphs [2,3]. The idea of graph edit
distance is to define the dissimilarity of graphs by the amount of
distortion that is needed to transform one graph into another.
Using the edit distance, an input graph to be classified can be ana-
lyzed by computing its dissimilarity to a number of training
graphs. For classification, the resulting distance values may be
fed, for instance, into a nearest-neighbor classifier. Alternatively,
the edit distance of graphs can also be interpreted as a pattern sim-
ilarity measure in the context of kernel machines, which makes a
large number of powerful methods applicable to graphs [4], includ-
ing support vector machines for classification and kernel principal
component analysis for pattern analysis. There are various applica-
tions where the edit distance has proved to be suitable for error-
tolerant graph matching [5,6].

Yet, the error-tolerant nature of edit distance potentially allows
every node of a graph to be mapped to every node of another graph
(unlike exact graph matching methods such as subgraph isomor-
phism or maximum common subgraph). The time and space com-
plexity of edit distance computation is therefore very high.
Consequently, the edit distance can be computed for graphs of a
rather small size only.

In recent years, a number of methods addressing the high
computational complexity of graph edit distance computation
have been proposed. In some approaches, the basic idea is to
perform a local search to solve the graph matching problem, that
is, to optimize local criteria instead of global, or optimal ones
[7,8]. In [9], a linear programming method for computing the
edit distance of graphs with unlabeled edges is proposed. The
method can be used to derive lower and upper edit distance
bounds in polynomial time. Two fast but suboptimal algorithms
for graph edit distance computation are proposed in [10]. The
authors propose simple variants of an optimal edit distance algo-
rithm that make the computation substantially faster. A number
of graph matching methods based on genetic algorithms have
been proposed [11]. Genetic algorithms offer an efficient way
to cope with large search spaces, but are non-deterministic
and suboptimal. A common way to make graph matching more
efficient is to restrict considerations to special classes of graphs.
Examples include the classes of planar graphs [12], bounded-va-
lence graphs [13], trees [14], and graphs with unique vertex la-
bels [15]. Recently, a suboptimal edit distance algorithm
has been proposed [5] that requires the nodes of graphs to be

0262-8856/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.imavis.2008.04.004

* Corresponding author. Tel./fax: +41 316318699.
E-mail addresses: riesen@iam.unibe.ch (K. Riesen), bunke@iam.unibe.ch (H.

Bunke).

Image and Vision Computing 27 (2009) 950–959

Contents lists available at ScienceDirect

Image and Vision Computing

journal homepage: www.elsevier .com/locate / imavis

mailto:riesen@iam.unibe.ch
mailto:bunke@iam.unibe.ch
http://www.sciencedirect.com/science/journal/02628856
http://www.elsevier.com/locate/imavis


planarly embedded, which is satisfied in many, but not all com-
puter vision applications of graph matching.

In this paper, we propose a new efficient algorithm for edit dis-
tance computation for general graphs. The method is based on an
(optimal) fast bipartite optimization procedure mapping nodes
and their local structure of one graph to nodes and their local struc-
ture of another graph. This procedure is somewhat similar in spirit to
the method proposed in [16,17]. However, rather than using dy-
namic programming for finding an optimal match between the sets
of local structure, we make use of Munkres’ algorithm [18]. Origi-
nally, this algorithm has been proposed to solve the assignment
problem in polynomial time. However, in the present paper we gen-
eralize the original algorithm to the computation of graph edit dis-
tance. In experiments on semi-artificial and real-world data we
demonstrate that the proposed method results in a substantial
speed-up of the computation of graph edit distance, while at the
same time the accuracy of the approximated distances is not much
affected.

A preliminary version of the current paper appeared in [19]. The
current paper has been significantly extended with respect to the
underlying methodology and the experimental evaluation.

2. Graph edit distance computation

In this section we first define our basic notation and then intro-
duce graph edit distance and its computation. Let L be a finite or
infinite set of labels for nodes and edges.

Definition 1. (Graph) A graph g is a four-tuple g ¼ ðV ; E; l; mÞ,
where

� V is the finite set of nodes,
� E # V � V is the set of edges,
� l : V ! L is the node labeling function, and
� m : E! L is the edge labeling function.

This definition allows us to handle arbitrary graphs with uncon-
strained labeling functions. For example, the labels can be given by
the set of integers, the vector space Rn, or a set of symbolic labels
L ¼ fa; b; c; . . .g. Moreover, unlabeled graphs are obtained as a spe-
cial case by assigning the same label l to all nodes and edges. Edges
are given by pairs of nodes ðu; vÞ, where u 2 V denotes the source
node and v 2 V the target node of a directed edge. Undirected
graphs can be modeled by inserting a reverse edge ðv;uÞ 2 E for
each edge ðu; vÞ 2 E with mðu; vÞ ¼ mðv;uÞ.

Graph matching refers to the task of evaluating the dissimilar-
ity of graphs. One of the most flexible methods for measuring the
dissimilarity of graphs is the edit distance [2,3]. Originally, the
edit distance has been proposed in the context of string matching
[20]. Procedures for edit distance computation aim at deriving a
dissimilarity measure from the number of distortions one has to
apply to transform one pattern into the other. The concept of edit
distance has been extended from strings to trees and eventually
to graphs [2,3]. Similarly to string edit distance, the key idea of
graph edit distance is to define the dissimilarity, or distance, of
graphs by the minimum amount of distortion that is needed to
transform one graph into another. Compared to other approaches
to graph matching, graph edit distance is known to be very flex-
ible since it can handle arbitrary graphs and any type of node and
edge labels. Furthermore, by defining costs for edit operations,

the concept of edit distance can be tailored to specific
applications.

A standard set of distortion operations is given by insertions,
deletions, and substitutions of both nodes and edges. We denote
the substitution of two nodes u and v by ðu! vÞ, the deletion of
node u by ðu! eÞ, and the insertion of node v by ðe! vÞ. For edges
we use a similar notation. Other operations, such as merging and
splitting of nodes [21], can be useful in certain applications but
are not considered in this paper. Given two graphs, the source
graph g1 and the target graph g2, the idea of graph edit distance
is to delete some nodes and edges from g1, relabel (substitute)
some of the remaining nodes and edges, and insert some nodes
and edges in g2, such that g1 is finally transformed into g2. A se-
quence of edit operations e1; . . . ; ek that transform g1 completely
into g2 is called an edit path between g1 and g2. In Fig. 1 an exam-
ple of an edit path between two graphs g1 and g2 is given. This edit
path consists of three edge deletions, one node deletion, one node
insertion, two edge insertions, and two node substitutions.

Obviously, for every pair of graphs (g1; g2), there exist a number
of different edit paths transforming g1 into g2. Let !ðg1; g2Þ denote
the set of all such edit paths. To find the most suitable edit path out
of !ðg1; g2Þ, one introduces a cost for each edit operation, measur-
ing the strength of the corresponding operation. The idea of such a
cost function is to define whether or not an edit operation repre-
sents a strong modification of the graph. Obviously, the cost func-
tion is defined with respect to the underlying node or edge labels.

Clearly, between two similar graphs, there should exist an inex-
pensive edit path, representing low cost operations, while for dis-
similar graphs an edit path with high costs is needed.
Consequently, the edit distance of two graphs is defined by the
minimum cost edit path between two graphs.

Definition 2. (Graph Edit Distance) Let g1 ¼ ðV1; E1; l1; m1Þ be the
source and g2 ¼ ðV2; E2; l2; m2Þ the target graph. The graph edit
distance between g1 and g2 is defined by

dðg1; g2Þ ¼ min
ðe1 ;...;ekÞ2!ðg1 ;g2Þ

Xk

i¼1

cðeiÞ;

where !ðg1; g2Þ denotes the set of edit paths transforming g1 into g2,
and c denotes the cost function measuring the strength cðeiÞ of edit
operation ei.

The computation of the edit distance is usually carried out by
means of a tree search algorithm which explores the space of all
possible mappings of the nodes and edges of the first graph to
the nodes and edges of the second graph. A widely used method
is based on the A* algorithm [22] which is a best-first search algo-
rithm. The basic idea is to organize the underlying search space as
an ordered tree. The root node of the search tree represents the
starting point of our search procedure, inner nodes of the search
tree correspond to partial solutions, and leaf nodes represent com-
plete – not necessarily optimal – solutions. Such a search tree is
constructed dynamically at runtime by iteratively creating succes-
sor nodes linked by edges to the currently considered node in the
search tree. In order to determine the most promising node in the
current search tree, i.e. the node which will be used for further
expansion of the desired mapping in the next iteration, a heuristic
function is usually used. Formally, for a node p in the search tree,
we use gðpÞ to denote the cost of the optimal path from the root
node to the current node p, i.e. gðpÞ is set equal to the cost of the
partial edit path accumulated so far, and we use hðpÞ for denoting

g1 g2

Fig. 1. A possible edit path between graph g1 and g2 (node labels are represented by different shades of grey).

K. Riesen, H. Bunke / Image and Vision Computing 27 (2009) 950–959 951



Download English Version:

https://daneshyari.com/en/article/527177

Download Persian Version:

https://daneshyari.com/article/527177

Daneshyari.com

https://daneshyari.com/en/article/527177
https://daneshyari.com/article/527177
https://daneshyari.com

