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a b s t r a c t

In this paper, we address the problem of image categorization with a fast novel method based on the
unsupervised clustering of graphs in the context of both region-based segmentation and the constellation
approach to object recognition. Such method is an EM central clustering algorithm which builds proto-
typical graphs on the basis of either Softassign or fast matching with graph transformations. We present
two realistic applications and their experimental results: categorization of image segmentations and
visual localization. We compare our graph prototypes with the set median graphs. Our results reveal that,
on the one hand, structure extracted from images improves appearance-based visual localization accu-
racy. On the other hand, we show that the cost of our central graph clustering algorithm is the cost of
a pairwise algorithm. We also discuss how the method scales with an increasing amount of images. In
addition, we address the scientific question of what are the bounds of structural learning for categoriza-
tion. Our in-depth experiments both for region-based and feature-based image categorization, will show
that such bounds depend hardly on structural variability.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Categorization from region-based segmentation

Image categorization is a key problem in Computer Vision [1].
From the point of view of the efficiency of the image classification
process, the prototype of a class yields a coarse-to-fine approach.
In this regard, there are many examples relying on image segmenta-
tion as a previous step for categorization. For instance, in [2] it is ar-
gued that segmentation may provide interesting information about
objects, even though the segmentation process is not perfect. Actu-
ally, many approaches have been addressed to a simplistic partition-
ing of the image in blocks (see for instance [3]). A well known
example is Blobworld [4,5] where clustering/segmentation precedes
image queries. In the latter approaches, few graph-based learning
attempts have been performed in order to learn the structure of
the adjacency-region graph and use it later for image indexing.

1.2. Categorization in the constellations approach

On the other hand, structural criteria, graph matching, and even
graph learning, have been considered as fundamental elements in

the set up of the constellation (part/features-based) approach to ob-
ject recognition [23]. Most of the research in such direction has
been focused on exploiting feature (local) statistics, whereas struc-
tural (global) statistics have been typically confined to the joint
Gaussian of feature locations [13]. However, there has been recent
interest in modelling and learning structural relationships. This is
the case of the tree-structured models [14,21] and the k-fans graph
model [10]. Anyway, models with higher relational power are often
needed for solving realistic situations. In this regard, a key question
is to find an adequate trade-off between the complexity of the mod-
el and the computational cost of learning and using it.

1.3. Central graph clustering

In this paper, we combine a recently developed method for
graph clustering with a novel supergraph-based method for pro-
totype building and also test experimentally such combination
both in the region-based and in the constellation approaches
for image categorization. Graph clustering is motivated by the
need of different structural abstraction levels for categorizing
images. One may follow either the central or the pairwise clus-
tering approach. Here, we follow central graph clustering
[9,25,16] because of its convenience for developing structural
generative models, a task that has been more addressed in the
context of trees [18,19] than in the more general case. However,
the key of central graph clustering is to have an strategy for
learning automatically the prototype of each class for further
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analysis. Such task has been addressed by other researchers
[18,17]. In [27], we proposed an incremental method which de-
pends on the order in which the graphs are fused. Later, in [8],
we presented an alternative method which overcomes such
problem. It is based on the information provided by the diffusion
kernels [11,22] in order to decide which matches are preferable
to be considered in order to fuse the nodes of the graphs in the
set. Our algorithm works both with continuous graph-matching
methods like Softassign, or its kernelized version [26], and with
faster alternative discrete matching methods, that is, no graph
matching method is precluded. Thus, here we test both a struc-
ture-driven matching approach like Softassign and a highly attri-
bute-based method like GTM, graph-transformation matching [6].
GTM relies in initial putative matches based on feature similar-
ities (actually GTM works as an structural filter over the initial
matches) yielding a consensus graph, provided that such sub-
graph exists.

1.4. Contributions and paper organization

Our contribution is twofold. First, we propose an efficient
integration of graph clustering and supergraph-based prototype
building; our graph-learning method is tested, using Softassing
and GTM, in categorization of segmented images and in a visual
localization (scene recognition) context. Besides this test, our sec-
ond contribution is to determine what is the added value of
structural categorization. In region-based categorization, this im-
plies to analyze the contribution of different matching algo-
rithms both to situations where the structure is decisive and
where attributes are key. However, in localization, where the
attributes are given by the application and can not be modified,
we focus on the analysis of structural variability. We will find
that the contribution of structure to image categorization in
localization contexts is tightly bounded by the structural vari-
ability of the environment.

The rest of the paper is organized as follows. In Section 2 we de-
scribe two different similarity measures between attributed graphs
extracted from the images, and proper graph-matching algorithms
(graph-transformation matching and attributed Softassign) for
computing them. These measures are the core of the graph cluster-
ing cost function described in Section 3, where we detail how the
combination of an EM clustering algorithm and a supergraph-
based prototype strategy improves structural learning. We choose
an EM algorithm for the chicken and egg problem of determining
prototypes after the clusters and correct clusters after the proto-
types. Then, Section 4 is the core of the paper and it is there where
we compare the contribution of matching algorithms to two differ-
ent contexts of image categorization, and also where we discuss
the added value of structural categorization. Finally, in Section 5
we present our conclusions and future works.

2. Similarity measures and graph matching

2.1. Size of consensus graph and GTM

Let Gi and Gj, where j Vi j¼j Vj j¼ M, be two node-attributed K-NN
graphs after computing one-to-one putative matchings using bi and
bj, respectively. Then, given their adjacency matrices A and B we de-
fine the consensus graph as the K-NN graph Gc ¼ ðVc; EcÞ where
v 2 Vc ()Mðk; lÞ ¼ 1 through the one-to-one matching M, being
k 2 Vi; l 2 Vj and satisfying Aka � Blb 8a 2 KNNeighborðkÞ; 8b 2
KNNeighborðlÞ. Therefore, the matching induces an isomorphism be-
tween the K-NN graphs derived for selecting a given set of vertices in
Vi and the same for Vj. Then, the latter matching also yields a good
similarity measure Fij ¼ jVcj between the two input graphs.

Considering the two sets of M characteristic points cLi 3 sk andcLj 3 pl, where sk matches sl, we build their associated median K-
NN graphs as follows. Graph Gi ¼ ðVi; Ei; biÞ is given by vertices Vi

associated to the positions of the M points. A non-directed edge
hk,ai exists in Ei when sa is one of the K = 4 closest neighbors of
sk and also ksk � sak 6 g, being g ¼ medhr;ti2Vi�Vi

ksr � stk the med-
ian of all distances between pairs of vertices. The median filters
structural deformations due to outlying points. If there are not
K vertices that support the structure of sk then this vertex is
disconnected completely. The graph Gi, which is not necessarily
connected, has the M �M adjacency matrix Aka where Aka ¼ 1
when hk; ai 2 Ei and Aka ¼ 0 otherwise. Similarly, the graph
Gj ¼ ðVj; Ej; bjÞ for points pl has adjacency matrix Blb, also of
dimensions M �M because of the one-to-one initial matching
M. Each node is attributed with a feature vector bj (SIFT descrip-
tors. [24]).

Graph transformational matching [6,7] relies on the hypothe-
sis that outlying matchings in M may be iteratively removed: (i)
select an outlying matching; (ii) remove matched features corre-
sponding to the outlying matching, as well as this matching it-
self; (iii) recompute both median K-NN graphs. Structural
disparity is approximated by computing the residual adjacency
matrix R ¼j A� B j and selecting jout ¼ arg maxj¼1...M

PM
i¼1Rij, that

is, the one which maximizes the number of different edges in
both graphs. The selected structural outliers are the features
forming the pair ðsk;pjout Þ. Thus, we remove matching ðk; joutÞ
from M, sk from cLi, and pjout from cLj. Then, after decrementing
M, a new iteration begins, and the median K-NN graphs are com-
puted from the surviving vertices. The algorithm stops when it
reaches the null residual matrix, that is, when Rij ¼ 0 " ij; it
seeks a consensus graph (initial experimental evidence shows
that the pruning with the residual adjacency matrix may be
too aggressive). Considering that the bottleneck of the algorithm
is the re-computation of the graphs, which takes O(M2 logM) (the
same as computing the median at the beginning of the algo-
rithm) and also that the maximum number of iterations is M,
the worst case complexity is O(M3 logM). GTM is similar to
bipartite graph matching because it is mainly cost driven
although structure is somewhat decisive.

2.2. Normalized cost and attributed softassign

Alternatively, we define a symmetric and normalized dissimi-
larity measure between two graphs relying on the maximization
of a cost function for graph matching:

Fij ¼ 1�maxM½FðGi;Gj;MÞ�
max½Fii; Fjj�

; ð1Þ

Fii ¼ FðGi;Gi; IjVi jÞ, Fjj ¼ FðGj;Gj; IjVj jÞ, being IjVi j and IjVj j the identity
matrices defining self-matchings. This results in a normalized mea-
sure Fij ¼ Fji 2 ½0;1�. That is, when the compared graphs are isomor-
phic, this value is 1, and as they become different this value is closer
to 0.

A classical way of defining the cost function is to use the qua-
dratic Gold and Rangarajan [15] one (adapted in this case to com-
bine structural similarity with pairwise attribute similarity):

FðGi;Gj;MÞ ¼
XjVi j

k¼1

XjVj j

i¼1

XjVi j

b¼1

XjVj j

j¼1

MklMabAkaBlbCkalb; ð2Þ

where M is the matching matrix being evaluated, and Ckalb is a
dissimilarity measure (e.g. decay of Euclidean distance) between
the attributes of the nodes k and l, and a and b. The latter cost
function is maximized by a procedure known as graduated assign-
ment, which iteratively proposes a benefit matching matrix and
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