Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Formal total synthesis of borrelidin: synthesis of C1–C11 fragment via desymmetrization strategy

J. S. Yadav*, Padmavani Bezawada, Venugopal Chenna

Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India

ARTICLE INFO

ABSTRACT

Article history: Received 6 March 2009 Revised 26 March 2009 Accepted 30 March 2009 Available online 2 April 2009

Keywords:

Borrelidin, Desymmetrization Sharpless asymmetric epoxidation Evan's chiral auxiliary

Borrelidin (1), a structurally unique 18-membered macrolide antibiotic possessing anti-Borrelia activity was first isolated from *Streptomyces rochei* in 1949 by Berger et al.¹ First planar structure was proposed by Keller-Schierlein in 1967,² and X-ray crystallographic studies by Anderson et al. revealed its absolute structure.³ It has reduced polypropionate moiety with four methyl groups possessing a distinctive syn/syn/anti relationship, a Z/E cyanodiene unit at C12-C15, and a cyclopentane carboxylic acid subunit at C17. Borrelidin possesses antiviral,⁴ antibacterial activity,^{1,5} in addition to anti-angiogenesis effects⁶ and is found to display inhibitory activity toward cyclin-dependent kinase Cdc28/Cln2 of Saccharomyces cerevisiae.⁷ Interesting biological activity and complex structural feature of borrelidin attracted many synthetic chemists which resulted in first total synthesis by Morken and co-workers,⁸ followed by efforts from various other groups for the total synthesis through synthetic⁹⁻¹¹ and biosynthetic pathways.¹²

Our ongoing research on the synthesis of biologically active molecules by desymmetrization strategy, and the fascinating biological activity of borrelidin encouraged us to select this molecule as a target for total synthesis. We herein report the synthesis of C1–C11 fragment of borrelidin **1**.

The retrosynthetic plan for the borrelidin **1** was similar to the Satoshi Omura's approach¹⁰ in which borrelidin **1** could be easily obtained from the carboxylic acid compound **3** and the alcohol **4**. Compound **3** would be synthesized from compound **5** by simple reduction and oxidation reactions, which in turn could be obtained from compound **6** by extending two carbons using Wittig reaction

and stereoselective Evans alkylation. Compound **6** is obtained by stereoselective opening of epoxide **7**, which in turn could be obtained from compound **8**. Compound **8** is accessible from the known precursor **9** (Scheme 1).

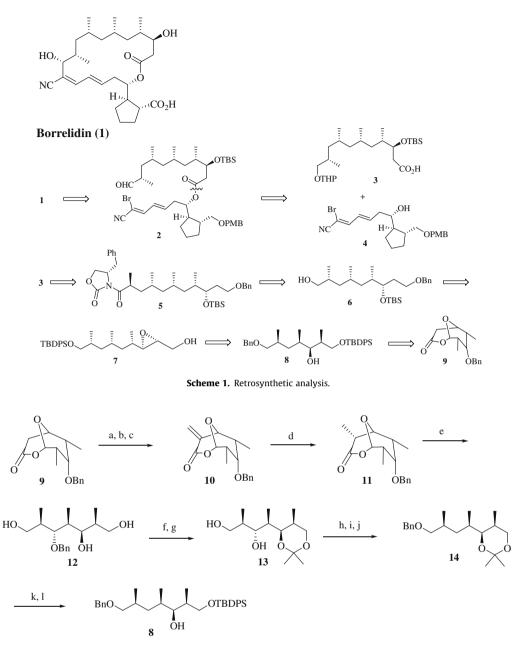
A stereoselective formal total synthesis of borrelidin is described. The synthetic strategy for synthesis of

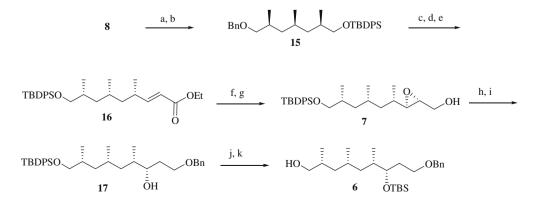
C1-C11 fragment features desymmetrization of Diels-Alder adduct, Sharpless asymmetric epoxidation,

Our synthesis started with the precursor **9**, which was prepared earlier in our group and utilized to make several natural products.¹⁵ Compound **9** was hydroformylated, further protected as methanesulfonate, and treated with DBU to get olefin **10**.¹⁶ The olefin **10** was stereoselectively reduced to obtain compound **11**, which on further reductive ring opening with DIBAL-H yielded compound **12**. Protection of 1,3-diol as acetonide and deprotection of benzyl group provided compound **13**, which was selectively protected as monobenzyl ether and the secondary hydroxyl group was converted into the xanthate ester and reduced to obtain compound **14**. Deprotection of acetonide and selective primary hydroxyl protection with TBDPS–Cl yielded compound **8** (Scheme 2).

Compound **8** was converted to xanthate ester, further reduced to provide compound **15**, which was subjected to debenzylation followed by oxidation and further extension of two carbon units by a C2 Wittig reaction yielded compound **16**. The ester was reduced to alcohol and subjected to Sharpless asymmetric epoxidation¹³ to obtain compound **7**. Protection of hydroxyl group followed by reductive opening of epoxide afforded compound **17**. The resulting hydroxyl group was protected with TBDMS–Cl and TBDPS group was selectively deprotected using NH₄F and MeOH¹⁷ to afford compound **6** (Scheme 3).

Compound **6** was oxidized to aldehyde, and subjected to Wittig reaction to obtain compound **18**. The resulting olefin was selectively hydrogenated using NiCl₄ and NaBH₄¹⁸ and then the ester was hydrolyzed in basic conditions to yield compound **19**. The acid




regioselective opening of chiral epoxide, and alkylation using Evans chiral auxiliary.

 $\ensuremath{\textcircled{}^\circ}$ 2009 Published by Elsevier Ltd.

^{*} Corresponding author. Tel.: +91 40 27193030; fax: +91 40 27160512. *E-mail address:* yadavpub@iict.res.in (J.S. Yadav).

Scheme 2. Reagents and conditions: (a) LDA, paraformaldehyde, THF, $-78 \,^{\circ}$ C; (b) MsCl, Et₃N, DCM, $0 \,^{\circ}$ C-rt; (c) DBU, DCM, rt, 60% (three steps); (d) H₂, 10%, Pd–C, Na₂CO₃, EtOAc, rt, 95%; (e) DIBAL-H, DCM, rt, 85%; (f) 2,2-DMP, acetone, PTSA, rt; (g) Li, Naphthalene, $-23 \,^{\circ}$ C, 65% (two steps); (h) NaH, BnBr, THF, $0 \,^{\circ}$ C; (i) NaH, CS₂, MeI, THF; (j) Bu₃SnH, cat. AIBN, toluene, reflux, 77% (three steps); (k) cat. PTSA, MeOH; (l) TBDPS–CI, imidazole, DCM, rt, 79% (two steps).

Scheme 3. Reagents and conditions: (a) NaH, CS₂, MeI, THF; (b) Bu₃SnH, cat. AIBN, toluene, reflux, 83% (two steps); (c) Li, Naphthalene, -23 °C; (d) IBX, DMSO, THF, rt; (e) Ph₃P=CHCOOEt, benzene, rt, 80% (three steps); (f) DIBAL-H, DCM, rt; (g) (-)-DIPT, TBHP, titanium isopropoxide, DCM, 80% (two steps); (h) Red-AI, THF, 0 °C; (i) NaH, BnBr, THF, 0 °C, 73% (two steps); (j) TBSOTf, 2,6-lutidine, DCM, 0 °C; (k) NH₄F, MeOH, rt, 78% (two steps).

Download English Version:

https://daneshyari.com/en/article/5272315

Download Persian Version:

https://daneshyari.com/article/5272315

Daneshyari.com